Answer:

Explanation:
Given, for girl : Weight or force;

Area of both heels;


For elephant, Weight = Force
= 2000 kg•f
Area of 4 feet;


Now;



Thus, the girl's pointed heel sandals exert 12.5 times more pressure P than the pressure P exerted by the elephant.
I aspire this helps!
Answer:
a) a = 34.375 m / s², b) v_f = 550 m / s
Explanation:
This problem is the launch of projectiles, they tell us to ignore the effect of the friction force.
a) Let's start with the final part of the movement, which is carried out from t= 16 s with constant speed
v_f =
we substitute the values
v_f =
The initial part of the movement is carried out with acceleration
v_f = v₀ + a t
x₁ = x₀ + v₀ t + ½ a t²
the rocket starts from rest v₀ = 0 with an initial height x₀ = 0
x₁ = ½ a t²
v_f = a t
we substitute the values
x₁ = 1/2 a 16²
x₁ = 128 a
v_f = 16 a
let's write our system of equations
v_f =
x₁ = 128 a
v_f = 16 a
we substitute in the first equation
16 a =
16 4 a = 6600 - 128 a
a (64 + 128) = 6600
a = 6600/192
a = 34.375 m / s²
b) let's find the time to reach this height
x = ½ to t²
t² = 2y / a
t² = 2 5100 / 34.375
t² = 296.72
t = 17.2 s
We can see that for this time the acceleration is zero, so the rocket is in the constant velocity part
v_f = 16 a
v_f = 16 34.375
v_f = 550 m / s
The time it takes for the Moon to rotate once around its axis is equal to the time it takes for the Moon to orbit once around Earth
Answer:
In 0.5 seconds.
Explanation:
The time would be the same because it only depends on the height and the vertical component of the initial velocity. This is of course because each direction must be treated independently. Since between both cases only the horizontal speed changes, the height is the same and the vertical component of the initial velocity is null for both, the time to fall is the same.