Answer:
Be pushed away from each other.
Explanation:
Based on the calculations, the average velocity is equal to 360 m/s and the percent difference is equal to 4.72%.
<h3>What is average velocity?</h3>
An average velocity can be defined as the total distance covered by a physical object divided by the total time taken.
<h3>What is an
average?</h3>
An average is also referred to as mean and it can be defined as a ratio of the sum of the total number in a data set to the frequency of the data set.
<h3>How to calculate the
average velocity?</h3>
Mathematically, the average velocity for this data set would be calculated by using this formula:
Average = [F(v)]/n
Vavg = [v₁ + v₂ + v₃ + v₄ + v₅)/5
Since the values of the average velocity from the table are missing, we would assume the following values for the purpose of an explanation:
Substituting the parameters into the formula, we have:
Vavg = [300 + 450 + 500 + 250 + 300)/5
Vavg = 1800/5
Vavg = 360 m/s.
Next, we would calculate the percent difference by using this formula:
![Percent \;difference = \frac{[V_{avg}\;-\;V_{sound}]}{V_{sound}} \times 100](https://tex.z-dn.net/?f=Percent%20%5C%3Bdifference%20%3D%20%5Cfrac%7B%5BV_%7Bavg%7D%5C%3B-%5C%3BV_%7Bsound%7D%5D%7D%7BV_%7Bsound%7D%7D%20%5Ctimes%20100)
Percent difference = [360 - 343]/360 × 100
Percent difference = 17/360 × 100
Percent difference = 0.0472 × 100
Percent difference = 4.72%.
Read more on average here: brainly.com/question/9550536
#SPJ1
We commonly know refer to something 'digital' has to something electronic that can be visibly seen such as a watch, clock, camera, screen, etc. It really refers to stored energy or electricity that's not natural. But the word 'digital' in science refers to the depiction of data<span> or </span>information<span> in </span>figures<span> (such as in a </span>table<span>) in contrast to as a </span>chart<span>, </span>graph<span>, </span>drawing<span>, or other pictorial </span>form.<span>
</span>
Answer:
The formula is dimensionally correct.
Explanation:
Given

Required
Prove its correctness
Write out the dimension of each:
--- displacement
--- velocity * time
--- acceleration * square of time
The expression becomes:


Apply law of indices



Both sides of the equation are equal
a)
We use the formula :
m1v1i + m2v2i = m1v1f + m2v2f
Substituting the values in:
4.0kg*8.0m/s + 4.0kg*0m/s = 4.0kg*0m/s +4.0kg*v2f
Calculating this we get:
32.0kg*m/s + 0kg*m/s = 0kg*m/s + 4.0kg*v2f
Rearrange for v2f:
v2f = 
This gives us 8.0 m/s as the final velocity of the second ball.
b)
Since the collision is assumed to be elastic it means that the kinetic energy must be equal before and after the collision.
This means we use the formula:
Ek =
+
=
+ 
Substituting in values:
Ek = 0.5*4.0kg*(8.0m/s)^2 + 0.5*4.0kg*(0m/s)^2 = 0.5*4.0kg*(0m/s)^2 + 0.5*4.0kg*(8.0m/s)^2
This simplifies to:
Ek= 128J + 0J = 0J + 128J
This shows us that the kinetic energy is equal on each side therefore the collision is Elastic and no energy has been lost.