1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tatyana61 [14]
3 years ago
7

What are the answers too these questions

Mathematics
1 answer:
steposvetlana [31]3 years ago
8 0

Answer:

Step-by-step explanation:

i can't see it

You might be interested in
10. Which transformations result in a preimage and image with opposite orientations?
Airida [17]
Reflections and glide reflections both give you a transformation where the preimage and image have opposite orientations.
3 0
3 years ago
Read 2 more answers
Three more than eight times a number is equal to 19
djverab [1.8K]
19-3=16
16/8=2
2x8+3=19
The answer is 2.
8 0
3 years ago
Read 2 more answers
8 meters in 10 seconds as a unit rate
Mazyrski [523]
8 ÷ 10 = 0.8
So the unit rate would be 0.8
Hope it helps!
6 0
3 years ago
You can convert a temperature given in degrees Celsius to Fahrenheit temperature by using the expression 9x ÷ 5 + 32, where x is
Minchanka [31]

Water freezes at 32 degree Fahrenheit.

Step-by-step explanation:

Given,

Formula for Celsius to Fahrenheit = \frac{9}{5}x+32

x = Celsius temperature

Boiling point of water = 0°C

We will put x=0

0°C = \frac{9}{5}(0)+32

0°C = 0+32

0°C = 32 degree Fahrenheit

Water freezes at 32 degree Fahrenheit.

Keywords: temperature, addition

Learn more about temperature at:

  • brainly.com/question/10894205
  • brainly.com/question/10987396

#LearnwithBrainly

4 0
3 years ago
Integrate the following problem:
vazorg [7]

Answer:

\displaystyle \frac{2 \cdot sin2x-cos2x}{5e^x} + C

Step-by-step explanation:

The integration by parts formula is: \displaystyle \int udv = uv - \int vdu

Let's find u, du, dv, and v for \displaystyle \int e^-^x \cdot cos2x \ dx .

  • u=e^-^x
  • du=-e^-^x dx
  • dv=cos2x \ dx
  • v= \frac{sin2x}{2}

Plug these values into the IBP formula:

  • \displaystyle \int e^-^x \cdot cos2x \ dx = e^-^x \cdot \frac{sin2x}{2} - \int \frac{sin2x}{2} \cdot -e^-^x dx
  • \displaystyle \int e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} - \int \frac{sin2x}{2} \cdot -e^-^x dx

Now let's evaluate the integral \displaystyle \int \frac{sin2x}{2} \cdot -e^-^x dx.

Let's find u, du, dv, and v for this integral:

  • u=-e^-^x
  • du=e^-^x dx
  • dv=\frac{sin2x}{2} dx
  • v=\frac{-cos2x}{4}  

Plug these values into the IBP formula:

  • \displaystyle \int -e^-^x \cdot \frac{sin2x}{x}dx = -e^-^x \cdot \frac{-cos2x}{4} - \int \frac{-cos2x}{4}\cdot e^-^x dx

Factor 1/4 out of the integral and we are left with the exact same integral from the question.

  • \displaystyle \int -e^-^x \cdot \frac{sin2x}{x}dx = -e^-^x \cdot \frac{-cos2x}{4} + \frac{1}{4} \int cos2x \cdot e^-^x dx

Let's substitute this back into the first IBP equation.

  • \displaystyle \int e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} - \Big [ -e^-^x \cdot \frac{-cos2x}{4} + \frac{1}{4} \int cos2x \cdot e^-^x dx \Big ]  

Simplify inside the brackets.

  • \displaystyle \int e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} - \Big [ \frac{e^-^x \cdot cos2x}{4} + \frac{1}{4} \int cos2x \cdot e^-^x dx \Big ]

Distribute the negative sign into the parentheses.

  • \displaystyle \int e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} -  \frac{e^-^x \cdot cos2x}{4} - \frac{1}{4} \int cos2x \cdot e^-^x dx

Add the like term to the left side.

  • \displaystyle \int e^-^x \cdot cos2x \ dx  + \frac{1}{4} \int cos2x \cdot e^-^x dx= \frac{e^-^x sin2x}{2} -  \frac{e^-^x \cdot cos2x}{4}  
  • \displaystyle \frac{5}{4} \int   e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} -  \frac{e^-^x \cdot cos2x}{4}  

Make the fractions have common denominators.

  • \displaystyle \frac{5}{4} \int   e^-^x \cdot cos2x \ dx = \frac{2e^-^x sin2x}{4} -  \frac{e^-^x \cdot cos2x}{4}

Simplify this equation.

  • \displaystyle \frac{5}{4} \int   e^-^x \cdot cos2x \ dx = \frac{2e^-^x sin2x - e^-^x cos2x}{4}

Multiply the right side by the reciprocal of 5/4.

  • \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{2e^-^x sin2x - e^-^x cos2x}{4} \cdot \frac{4}{5}

The 4's cancel out and we are left with:

  • \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{2e^-^x sin2x - e^-^x cos2x}{5}

Factor e^-^x out of the numerator.

  • \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{e^-^x(2 \cdot sin2x-cos2x)}{5}

Simplify this by using exponential properties.

  • \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{2 \cdot sin2x-cos2x}{5e^x}

The final answer is \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{2 \cdot sin2x-cos2x}{5e^x} + C.

7 0
3 years ago
Read 2 more answers
Other questions:
  • Mari packs the same number of oranges in each bag. How many oranges does Mari need to pack 9 bags? How can you determine the num
    9·1 answer
  • What is this angle?​
    5·2 answers
  • ????????????????????????
    11·1 answer
  • Anita is filling a small pool for her kids. Currently, there are 60 gallons of water in the pool and she is filling the pool at
    15·1 answer
  • 13=2f+5 f=two step equation
    14·1 answer
  • Hey! I’m struggling and need help! Thank you!
    8·1 answer
  • Note: Enter your answer and show all the steps that you use to solve this problem in the space provided.
    15·1 answer
  • Point R on the coordinate grid below shows the location of a car in a parking lot. A second car needs to park 6 units above R to
    5·1 answer
  • -6-5 (subtracting integers))​
    6·2 answers
  • Choose the correct graph that illustrates the equation by clicking on the image{(x, y): -1 ≤ x ≤ 3
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!