1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leokris [45]
3 years ago
9

How do you find the height of a triangle?

Mathematics
1 answer:
Dmitrij [34]3 years ago
7 0
Answers:  height, "h", of a triangle:    <span> h = 2A /  (b₁ + b₂) .
___________________________________________________ </span>
Explanation:
__________________________________________________
The area of a triangle, "A", is equal to (1/2) * (b₁ + b₂) * h ; 
                                    or:  A = (1/2) * (b₁ + b₂) * h
                                    or: write as:  A =  [(b₁ + b₂) * h] / 2 ;
          ___________________________________________
                                     in which:  A = area of the triangle; 
                                                       b₁ = length of one of the bases
                                                                 of the triangle ("base 1");
                                                       b₂ = length of the other base
                                                                 of the triangle ("base 2");
                                                       h = height of the triangle;
____________________________________________________
To find the height of the triangle, we rearrange the formula to solve for "h" (height); assuming that all the units are the same (e.g. feet, centimeters); if no "units" are given, then the assumption is that the units are all the same.
We can use the term "units" if desired, in such cases; in which the area, "A" is measured in "square units"; or "units²",
_________________________________
So, given our formula for the "Area, "A"; of a triangle:
_________________________________________________
 A =  [(b₁ + b₂) * h] / 2 ; we solve for "h" in terms of the other values; by isolating "h" (height) on one side of the equation.
     If we knew the other values; we plug in the those other values.
______________________________________________
  Given:   A =  [(b₁ + b₂) * h] / 2 ;

Multiply EACH side of the equation by "2" ;
_________________________________________
            2*A = {  [(b₁ + b₂) * h] / 2 } * 2 ;
_________________________________________
to get:
_________________________________________
           2A = (b₁ + b₂) * h ;
_____________________________________________________
           Now, divide EACH side of the equation by:  "(b₁ + b₂)" ;  to isolate "h"
on one side of the equation; and solve for "h" (height) in terms of the other values;
_____________________________________
            2A /  (b₁ + b₂) = [ (b₁ + b₂) * h ] / (b₁ + b₂);
______________________________________
to get:
_______________________________________________
           2A /  (b₁ + b₂)  =  h ;  ↔<span>  h = 2A /  (b₁ + b₂)  .
__________________________________________________</span>
You might be interested in
A ball is tossed between three friends. The first toss is 8.6 feet, the second is 5.8 feet, and the third toss is 7.5 feet, whic
Rainbow [258]

angles formed by these tosses are  79.45, 59.02 and 41.53 degrees to the nearest hundredth.

<u>Step-by-step explanation:</u>

Here , We have a triangle with sides of length 8.6 feet, 5.8 feet and 7.5 feet.

The Law of Cosines (also called the Cosine Rule) says:

c^2 = a^2 + b^2 - 2ab (cosx)

Using the Cosine Rule to find the measure of the angle opposite the side of length 8.6 feet:

⇒ c^2 = a^2 + b^2 - 2ab (cosx)

⇒ c^2 -a^2 - b^2 = -2ab (cosx)

⇒ (cosx) =\frac{ c^2 -a^2 - b^2}{ -2ab}

⇒ (cosx) =\frac{(8.6^2 - 5.8^2 - 7.5^2)}{ ( -2(5.8)7.5)}

⇒ (cosx) =0.18310

⇒ cos^{-1}(cosx) = cos^{-1}(0.18310)

⇒ x = 79.45

The Law of Sines (or Sine Rule) is very useful for solving triangles:

\frac{a}{sin A} = \frac{ b}{sin B} =  \frac{c}{sin C}

We can now find another angle using the sine rule:

⇒\frac{ 8.6 }{ sin 79.45} = \frac{7.5}{ sin Y}

⇒sin Y = \frac{(7.5 (sin 79.45))}{  8.6}

⇒Y = 59.02 degrees

So, the third angle =180 - 79.45 - 59.02 = 41.53 degrees.

Therefore, angles formed by these tosses are  79.45, 59.02 and 41.53 degrees to the nearest hundredth.

4 0
3 years ago
[2P-3.) ^2+(2P+3)^2<br>​
WINSTONCH [101]

Answer:

[2P-3.) ^2+(2P+3)^2[2P-3.) ^2+(2P+3)^2[2P-3.) ^2+(2P+3)^2

4 0
3 years ago
Pressure Question! Please helpp, it's attached below xx
Natali5045456 [20]

Answer:

ttd2

Step-by-step explanation:

5 0
3 years ago
How many solutions does the equation have? show your work.
Inessa05 [86]

All real numbers

7w-(2+w) = 2(3w-1)

Expand

7w-(2+w)= 6w-2

7w-2-w=6w-2

Group like terms

6w-2=6w-2

Add 2 to both sides

6w=6w

subtract 6w from both sides

0=0

True for all w

6 0
3 years ago
Read 2 more answers
What is the first quartile of the set of data shown below?
____ [38]
The answer would be B 23
7 0
3 years ago
Other questions:
  • Pls help me on part B ;
    8·1 answer
  • 51.24 * 7.18 round each factor to its greatest place
    15·1 answer
  • A circle with a radius of 1/2ft is dilated by a scale factor of 8. Which statements about the new circle are true? Check all tha
    5·1 answer
  • How do you draw a number line to show how 0.6 is greater than 0.5?
    15·1 answer
  • On Monday 336 fourth graders went on a field trip to a local park. The teachers divided the students into 8 groups. Use a basic
    7·1 answer
  • Determine whether the underlined number is a statistic or a parameter. a sample of seniors selected and it is found that 25% own
    8·1 answer
  • How u do it, plz help me, I really need it to know
    9·1 answer
  • What is the equation of the line
    7·2 answers
  • Whats the value of 5y if -2(3y+5)=-4
    7·1 answer
  • What is the A value in the quadratic: X^2+3x-2* ​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!