Answer:
The reason for the offspring to present these genotypes is that during the formation of the gametes, the alleles separate and are inherited independently, therefore they can generate several different phenotypic combinations.
Explanation:
In order for an offspring to present very different phenotypes, as shown in the question above, it is necessary that the two red griffins with blue eyes that were crossed are heterozygous. Thus it will be possible for the offspring to present a wide variety of phenotype, according to Mendel's second law.
Mendel's second law is called the Law of segregation. This law explains that the alleles (which determine the characteristics of individuals) are separated in the formation of gametes and inherited by the offspring of a cross independently, and can generate different combinations of phenotypes, when the parents of a cross are heterozygous.
How this flowers structure relates to its function is by the hight and the sizes of its leafs.
Answer: cellular membrane: The cell membrane, also called the plasma membrane, is found in all cells and separates the interior of the cell from the outside environment. The cell membrane consists of a lipid bilayer that is semipermeable. The cell membrane regulates the transport of materials entering and exiting the cell.
Explanation:
passive transport Passive transport is a type of membrane transport that does not require energy to move substances across cell membranes. Instead of using cellular energy, like active transport, passive transport relies on the second law of thermodynamics to drive the movement of substances across cell membranes.
Explanation:
-Q. <em>How do membrane proteins aid in the movement of hydrophilic substances across the membrane?</em>
Transport proteins spanning the plasma membrane facilitate the movement of ions and other complex, polar molecules which are typically prevented from moving across the membrane from the extracellular or intracellular space.
Lipids are composed of fatty acids which form the hydrophobic tail and glycerol which forms the hydrophilic head; glycerol is a 3-Carbon alcohol which is water soluble, while the fatty acid tail is a long chain hydrocarbon (hydrogens attached to a carbon backbone) with up to 36 carbons.
Their polarity or arrangement can give these non-polar macromolecules hydrophilic and hydrophobic properties. Via diffusion, small water molecules can move across the phospholipid bilayer acts as a semi-permeable membrane into the extracellular fluid or the cytoplasm which are both hydrophilic and contain large concentrations of polar water molecules or other water-soluble compounds. The hydrophilic heads of the bilayer are attracted to water while their water-repellent hydrophobic tails face towards each other- allowing molecules of water to diffuse across the membrane along the concentration gradient.
Similarly via osmosis, molecules of water pass through the membrane due to the difference in osmotic pressure on either side of the phospholipid by layer this means that the water moves from regions of high osmotic pressure/concentration to regions of low pressure/ concentration to a steady state.
Transmembrane proteins are embedded within the membrane from the extracellular fluid to the cytoplasm, and are sometimes attached to glycoproteins (proteins attached to carbohydrates) which function as cell surface markers. Transport proteins are transmembrane proteins involed in moving molecules across the membrane.
There are two types:
- Channels or pores are filled with water, enabling charged molecules to diffuse across the membrane, from regions of high concentration to regions of lower concentration down the concentration gradient -this is a passive part of facilitated diffusion. Channels may undergo minor changes to become open or closed whereas pores are always in open states <em>e.g. H2O movement into and out of the cell via aquaporins.</em>
- Carrier proteins bind specifically bind to molecules and move them across or against concentration gradients. Unlike facilitated diffusion, carrier proteins directly or indirectly use energy in the form of ATP and modify solute specific regions, that aid in regulating ion exchange, through the hydrophobic layer of the plasma membrane- this is called <em>active transport.</em> <em>e.g. Na+/K+transported by the enzyme ATPase </em>
<em>Learn more about membrane components at brainly.com/question/1971706</em>
<em>Learn more about plasma membrane transport at brainly.com/question/11410881</em>
<em>#LearnWithBrainly</em>
Plants, Animals, and bacteria