A system is inconsistent when there are no solutions between the two equations. Graphically, the lines will be parallel (they never meet!) and the slopes will be the same. But the y-intercepts will be different.
Let's look at the four equations, with each solved as needed, into y = mx + b form.
A: 2x + y = 5
y = 5 - 2x
y = -2x + 5
Compared to y = 2x + 5, the slopes are different, so this system won't be inconsistent. Not a good choice.
B: y = 2x + 5
Compared to y = 2x + 5, the slopes are the same and the y intercepts are the same. This system has infinitely many solutions. Not a good choice.
C: 2x - 4y = 10
-4y = 10 - 2x
-4y = -2x + 10
y = 2/4x -10/4
Here the slopes are different, so, like A this is not a good choice.
D: 2y - 4x = -10
2y = =10 + 4x
2y = 4x - 10
y = 2x - 5
Compared to y = 2x + 5 we have the same slopes and different y intercepts. The lines will be parallel and the system is inconsistent.
Thus, D is the best choice.
Answer:
Each orange would cost $0.64.
Step-by-step explanation:
If you do 3.84 and divide that by 6, you would get the answer of $0.64 for each orange.

Recall that

Take it one piece at a time. For

, we can scale

by -5:

If we shift the argument by 1 and scale by -5, we have

so if we subtract this from

, we'll end up with

For the next piece, we can add another scaled and shifted step like

so that

For the last piece, we add one more term:

and so putting everything together, we get

:

Beachside it is supposed to be 619 into that form