Answer:
0.430625 = 0.431
Step-by-step explanation:
Let W represent winning, D represent a draw and L represent a loss.
12+ points can be garnered in each of the following ways.
6W 0D 0L
5W 1D 0L
5W 0D 1L
4W 2D 0L
4W 1D 1L
4W 0D 2L
3W 3D 0L
The probability of getting 12+ points is the sum of all these 7 probabilities.
Knowing that P(W) = 0.5
P(D) = 0.1
P(L) = 0.4
P(6W 0D 0L) = [6!/(6!0!0!)] 0.5⁶ 0.1⁰ 0.4⁰ = 0.015625
P(5W 1D 0L) = [6!/(5!1!0!)] 0.5⁵ 0.1¹ 0.4⁰ = 0.01875
P(5W 0D 1L) = [6!/(5!0!1!)] 0.5⁵ 0.1⁰ 0.4¹ = 0.075
P(4W 2D 0L) = [6!/(4!2!0!)] 0.5⁴ 0.1² 0.4⁰ = 0.09375
P(4W 1D 1L) = [6!/(4!1!1!)] 0.5⁴ 0.1¹ 0.4¹ = 0.075
P(4W 0D 2L) = [6!/(4!0!2!)] 0.5⁴ 0.1⁰ 0.4² = 0.15
P(3W 3D 0L) = [6!/(3!3!0!)] 0.5³ 0.1³ 0.4⁰ = 0.0025
The probability of getting 12+ points = 0.015625 + 0.01875 + 0.075 + 0.09375 + 0.075 + 0.15 + 0.0025 = 0.430625
Answer:
x = 16
y = -24
Step-by-step explanation:
Recall that the addition of matrices is done when matrices are of the same dimension. In this case, you are in fact adding matrices of the same dimension (dimension 1x2). Recall as well that in the addition of matrices, the elements of each matrix combine only with the element located in the exact same position in the other matrix.
So for this case the first element of the first matrix "16" combines with the first element of the second matrix "0" resulting in an element of value16 + 0 =16 in the new matrix.
Equally, the second element of the first matrix "-24" combines with the second element of the second matrix, resulting in : -24 + 0 = -24.
Therefore, the matrix resultant from this addition is: [16 -24] (same form of the first matrix, which indicates that adding a zero matrix to an existing matrix will not change the first matrix.
Just subtract the number infront of missing number to the opposing number
Answer:
$3283.2
Step-by-step explanation:
Given data
Principal= $2700
Rate= 4%
Time= 5 years
Required
the final Amount A
The compound interest formula is
A=P(1+r)^t
Substitute
A=2700(1+0.04)^5
A=2700(1.04)^5
A=2700*1.216
A=$3283.2
Hence the balance in the account after 5 years is $3283.2
Answer:
D. 13.79
Step-by-step explanation:
74.6-50.25-10.56=13.79