Find slope of line A:
Move into slope-intercept form y = mx+b
<span>5x + 8y = -9
8y = -5x - 9
y = (-5/8)x - 9/8
The slope of line A is -5/8.
If </span><span>Line B is perpendicular to line A, then
slope Line B = negative reciprocal of slope Line A</span>
<span>slope Line B = 8/5
So like B has the equation
y = (8/5)x + b
If it passes through (10,10), we know that when x = 10, y = 10. Use those values to solve for b:
</span>
<span>y = (8/5)x + b
10 = (8/5)·10 + b</span>
<span>10 = (8)·2 + b
10 = 16 + b
b = -6
So line B has equation </span>
<span>y = (8/5)x - 6
m = 8/5 and b = -6
so
m + b = 8/5 - 6 = 8/5 - 30/5 = -22/5
So m+b = -22/5 or -4.4 in decimal form
</span>
Answer:
Da!!!!!!!!!!!!!!!!!!!!!!!!!!
YES
<h3>Given</h3>
- Set A: A = {-26, -25, -24, -23, - 22, - 21}
- Set B: B ∈ {x: x is even, x ≥ 6 and x ≤ 20}
<h3>(a) </h3>
<em />
<em>Cardinality means the number of elements in the set.</em>
Cardinality of the set A:
n(A) = 6, since we can count 6 elements.
Set B has even numbers between 6 and 20, both included:
- B = {6, 8, 10, 12, 14, 16, 18, 20}
Then its cardinality is:
<h3>(b) </h3>
To solve this we need to compare the elements of sets A or B with numbers given:
- -22 ∈ A, True ⇒ -22 is listed as element of A
- 6 ∈ B, True ⇒ 6 is listed as element of B
- - 21 ∉ A, False ⇒ - 21 is listed as element of A
- 2 ∈ B, False ⇒ 2 is not listed as element of B
Answer:
Yes.
Step-by-step explanation:
Rational numbers can be represented as fractions with integers. The denominator must not equal 0.
is already in this form. This means that it's a rational number.
Hope this helps.