Answer:
the balls would move closer to each other
Explanation:
Answer:
The focal length of the appropriate corrective lens is 35.71 cm.
The power of the appropriate corrective lens is 0.028 D.
Explanation:
The expression for the lens formula is as follows;

Here, f is the focal length, u is the object distance and v is the image distance.
It is given in the problem that the given lens is corrective lens. Then, it will form an upright and virtual image at the near point of person's eye. The near point of a person's eye is 71.4 cm. To see objects clearly at a distance of 24.0 cm, the corrective lens is used.
Put v= -71.4 cm and u= 24.0 cm in the above expression.


f= 35.71 cm
Therefore, the focal length of the corrective lens is 35.71 cm.
The expression for the power of the lens is as follows;

Here, p is the power of the lens.
Put f= 35.71 cm.

p=0.028 D
Therefore, the power of the corrective lens is 0.028 D.
Answer:
H_w = 2.129 m
Explanation:
given,
Width of the weir, B = 1.2 m
Depth of the upstream weir, y = 2.5 m
Discharge, Q = 0.5 m³/s
Weir coefficient, C_w = 1.84 m
Now, calculating the water head over the weir




now, level of weir on the channel
H_w = y - H
H_w = 2.5 - 0.371
H_w = 2.129 m
Height at which weir should place is equal to 2.129 m.
Answer:
Magnetic field is the strength of magnetism created by a magnet, whereas the magnetic force is the force due to two magnetic objects. The concepts of magnetic field and magnetic force are widely used in fields such as classical mechanics, electromagnetic theory, field theory and various other applications.
Explanation:
Answer:
n physics, the kinetic energy (KE) of an object is the energy that it possesses due to its motion.[1] It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes. The same amount of work is done by the body when decelerating from its current speed to a state of rest.
In classical mechanics, the kinetic energy of a non-rotating object of mass m traveling at a speed v is {\displaystyle {\begin{smallmatrix}{\frac {1}{2}}mv^{2}\end{smallmatrix}}}{\begin{smallmatrix}{\frac {1}{2}}mv^{2}\end{smallmatrix}}. In relativistic mechanics, this is a good approximation only when v is much less than the speed of light.
The standard unit of kinetic energy is the joule, while the imperial unit of kinetic energy is the foot-pound.
Explanation: