Hey there if you can just type in the assignment in to google there will be a webisite if kuta software and it will have the answers
Can you pls mark me brainleist
Answer:
40,022.62
Step-by-step explanation:
9% of 36,718=3304.62
36,718+3304.62=40,022.62
Asked and answered elsewhere.
brainly.com/question/10629871How do you calculate it? You start by expressing the density in the units you have. Then you multiply by appropriate conversion factors to get to the units you want. Treat units as though they were any other variable. A value cancels that appears in both the numerator and denominator of a fraction.
Answer:
it could either be n15
15n
because a number multiplied by 5 is
n15
but in mathematics a number comes before a letter when writing a mathematical expression
Answer:
51/4
Step-by-step explanation:
To begin with you have to understand what is the distribution of the random variable. If X represents the point where the bus breaks down. That is correct.
X~ Uniform(0,100)
Then the probability mass function is given as follows.

Now, imagine that the D represents the distance from the break down point to the nearest station. Think about this, the first service station is 20 meters away from city A, and the second station is located 70 meters away from city A then the mid point between 20 and 70 is (70+20)/2 = 45 then we can represent D as follows

Now, as we said before X represents the random variable where the bus breaks down, then we form a new random variable
,
is a random variable as well, remember that there is a theorem that says that
![E[Y] = E[D(X)] = \int\limits_{-\infty}^{\infty} D(x) f(x) \,\, dx](https://tex.z-dn.net/?f=E%5BY%5D%20%3D%20E%5BD%28X%29%5D%20%3D%20%5Cint%5Climits_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20D%28x%29%20f%28x%29%20%5C%2C%5C%2C%20dx)
Where
is the probability mass function of X. Using the information of our problem
![E[Y] = \int\limits_{-\infty}^{\infty} D(x)f(x) dx \\= \frac{1}{100} \bigg[ \int\limits_{0}^{20} x dx +\int\limits_{20}^{45} (x-20) dx +\int\limits_{45}^{70} (70-x) dx +\int\limits_{70}^{100} (x-70) dx \bigg]\\= \frac{51}{4} = 12.75](https://tex.z-dn.net/?f=E%5BY%5D%20%3D%20%5Cint%5Climits_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20%20D%28x%29f%28x%29%20dx%20%5C%5C%3D%20%5Cfrac%7B1%7D%7B100%7D%20%5Cbigg%5B%20%5Cint%5Climits_%7B0%7D%5E%7B20%7D%20x%20dx%20%2B%5Cint%5Climits_%7B20%7D%5E%7B45%7D%20%28x-20%29%20dx%20%2B%5Cint%5Climits_%7B45%7D%5E%7B70%7D%20%2870-x%29%20dx%20%2B%5Cint%5Climits_%7B70%7D%5E%7B100%7D%20%28x-70%29%20dx%20%20%5Cbigg%5D%5C%5C%3D%20%5Cfrac%7B51%7D%7B4%7D%20%3D%2012.75)