To obtain the total surface we have to calculate the surface of the 4 triangles and add up the areas (remember that the area of a triangle is (b*h)/2 , b is the base, h is the height ).
We will caculate first the area of the base triangle for that we considerer the fact that it is an equilateral triangle with sides of lenght 6 cm, now we calculate the height, I am going to draw please wait a moment
using the pythagorean theorem we have that
![\begin{gathered} h^2=6^2cm^2-3^2\operatorname{cm}=27cm^2 \\ h=\text{ }\sqrt[]{27\text{ }}cm \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20h%5E2%3D6%5E2cm%5E2-3%5E2%5Coperatorname%7Bcm%7D%3D27cm%5E2%20%5C%5C%20h%3D%5Ctext%7B%20%7D%5Csqrt%5B%5D%7B27%5Ctext%7B%20%7D%7Dcm%20%5Cend%7Bgathered%7D)
Then, the area of the triangle is 6*h/2 = 3h = 15.59 cm^2.
Now we calculate the area of the other 3 triangles, notice that those triangles have the same base and height so we will calculate for one of them and multiply by 3. From the image we know that the height is 15cm and the base is 6 cm so the area is 45cm^2, and 45*3 cm^2 = 135cm^2.
Finally we add up all the areas:
Answer: infinite
Step-by-step explanation:
the lines go on forever
Answer:
Step-by-step explanation:
(x-3)^2 + (y+2)^2 = 7^2
Answer:
Step-by-step explanation:
To properly apply the substitution method, it will be better for us to rearrange the system of equations to have similar variables on the same side


We can simply evaluate equation 1 to have

y = -20
From the first equation alone, we can evaluate the value of y as -20. This is because only one unknown is present in equation one, hence a single equation is sufficient enough to evaluate it. If to unknowns were present, the two equations would have been utilized to evaluate the solution.