For this, we use simultaneous equations. Let George's page be g, Charlie's be c and Bill's page be b.
First, <span>George's page contains twice as many type words as Bill's.
Thus, g = 2b.
</span><span>Second, Bill's page contains 50 fewer words than Charlie's page.
Thus, b = c - 50.
</span>If each person can type 60 words per minute, after one minute (i.e. when 60 more words have been typed) <span>the difference between twice the number of words on bills page and the number of words on Charlie's page is 210.
We can express that as 2b - c = 210.
Now we need to find b, since it represents Bill's page.
We can substitute b for (c - 50) since b = c - 50, into the equation 2b - c = 210. This makes it 2(c - 50) - c = 210.
We can expand this to 2c - 100 - c = 210.
We can simplify this to c - 100 = 210.
Add 100 to both sides.
c - 100 + 100 = 210 + 100
Then simplify: c = 210 + 100 = 310.
Now that we know c, we can use the first equation to find b.
b = c - 50 = 310 - 50 = 260.
260 is your answer. I don't know where George comes into it. Maybe it's a red herring!</span>
X + y = 180
x = 4y
Plug that in and you get: 4y + y = 180
5y = 180
y = 36
If you want the larger angle, simply plug in y to x = 4y
So: x = 4(36) = 144
The smaller angle is 36 degrees, and the larger angle is 144 degrees.
A)3/6=1/2
b)1/2
hope it helps if u need more explanation I will give u.
Answer:
Please add the figure by clicking on the link button when posting something
Step-by-step explanation:
The bisector of the angle at A (call it AQ) divides the segment BC into segments BQ:QC having the ratio AB:AC. Use this fact to find x.
.. 9:15 = (2x -1):3x
.. 15(2x -1) = 9*3x . . . . . the product of the means equals the product of extremes
.. 30x -15 = 27x
.. 3x = 15
.. x = 5
___
According to the value of x, the bisector AQ divides the triangle into two isosceles triangles: ABQ, ACQ.