Answer:
1.63425 × 10^- 18 Joules.
Explanation:
We are able to solve this kind of problem, all thanks to Bohr's Model atom. With the model we can calculate the energy required to move the electron of the hydrogen atom from the 1s to the 2s orbital.
We will be using the formula in the equation (1) below;
Energy, E(n) = - Z^2 × R(H) × [1/n^2]. -------------------------------------------------(1).
Where R(H) is the Rydberg's constant having a value of 2.179 × 10^-18 Joules and Z is the atomic number= 1 for hydrogen.
Since the Electrons moved in the hydrogen atom from the 1s to the 2s orbital,then we have;
∆E= - R(H) × [1/nf^2 - 1/ni^2 ].
Where nf = 2 = final level= higher orbital, ni= initial level= lower orbital.
Therefore, ∆E= - 2.179 × 10^-18 Joules× [ 1/2^2 - 1/1^2].
= -2.179 × 10^-18 Joules × (0.25 - 1).
= - 2.179 × 10^-18 × (- 0.75).
= 1.63425 × 10^- 18 Joules.
The definition of solubility is the maximum quantity of solute that can dissolve in a certain quantity of solvent or quantity of solution at a specified temperature or pressure (in the case of gaseous solutes). For Gases, solubility decreases as temperature increases (duh...you have seen water boil, right?) The physical reason for this is that when most gases dissolve in solution, the process is exothermic. This means that heat is released as the gas dissolves. This is very similar to the reason that vapor pressure increases with temperature. Increased temperature causes an increase in kinetic energy. The higher kinetic energy causes more motion in the gas molecules which break intermolecular bonds and escape from solution. Do you need any more?
Answer:
there are 20 different types of aminoacyl trna synthetases
Explanation:
aminoacyl trna synthetases also called trna ligase, is an enzyme that attaches the appropriate amino acid onto its tRNA.
in humans, the 20 different types of aa-tRNA are made by the 20 different aminoacyl-tRNA synthetases, one for each amino acids of the genetic code.