Then answer would be D. Answer D is correct because you would need to use a better solvent to see the ink separate on the chromatography paper. Hope that helps. :)
Hydrogen bonding is important because it is crucial to all life on Earth. Here are three reasons why hydrogen bonding is important. DNA has a double-helix structure because hydrogen bonds hold together the base pairs in the middle. Without hydrogen bonds, DNA would have to exist as a different structure.
Ethanol is polar because the oxygen atoms attract electrons because of their higher electronegativity than other atoms in the molecule. Thus the -OH group in ethanol has a slight negative charge. Ammonia (NH3) is polar. Sulfur dioxide (SO2) is polar.
Explanation:
The given data is as follows.
(NaCl) = 
(H-O=C-ONO) = 
(HCl) = 
Conductivity of monobasic acid is 
Concentration = 0.01 
Therefore, molar conductivity (
) of monobasic acid is calculated as follows.

= 
= 
= 
Also,
= 
= 
= 
Relation between degree of dissociation and molar conductivity is as follows.

= 
= 0.1254
Whereas relation between acid dissociation constant and degree of dissociation is as follows.
K = 
Putting the values into the above formula we get the following.
K = 
= 
= 
= 
Hence, the acid dissociation constant is
.
Also, relation between
and
is as follows.

= 
= 3.7454
Therefore, value of
is 3.7454.
Answer: -
Concentration of PbI₂ = 1.5 x 10⁻³ M
PbI₂ dissociates in water as
PbI₂ ⇄ Pb²⁺ + 2 I⁻
So PbI₂ releases two times the amount of I⁻ as it's own concentration when saturated.
Thus the molar concentration of iodide ion in a saturated PbI₂ solution = [ I⁻] =
= 1.5 x 10⁻³ x 2 M
= 3 x 10⁻³ M
PbI₂ releases the same amount of Pb²⁺ as it's own concentration when saturated.
[Pb²⁺] = 1.5 x 10⁻³ M
So solubility product for PbI₂
Ksp = [Pb²⁺] x [ I⁻]²
=1.5 x 10⁻³ x (3 x 10⁻³)²
= 4.5 x 10⁻⁹