holacomo es tu pregunta nola entiendo
lanation:
We have to get the relationship between metallic character and atomic radius.
Metallic character increases with increase in atomic radius and decrease with decrease of atomic radius.
If electrons from outermost shell of an element can be removed easily, that atom can be considered to have more metallic character.
With increase in atomic radius, nuclear force of attraction towards outermost shell electron decreases which facilitates the release of electron.
With decrease in atomic radius, nuclear force of attraction towards outermost shell electrons increases, so electrons are hold tightly to nucleus. Hence, removal of electron from outermost shell becomes difficult making the atom less metallic in nature.
Answer:
again same questions
i think its from 1st chapter
Answer:
C₅H₁₀O₅
Explanation:
1. Calculate the mass of each element in 2.78 mg of X.
(a) Mass of C

(b) Mass of H

(c) Mass of O
Mass of O = 3.5 - 1.400 - 0.2349 = 1.87 g
2. Calculate the moles of each element

3. Calculate the molar ratios
Divide all moles by the smallest number of moles.

4. Round the ratios to the nearest integer
C:H:O = 1:2:1
5. Write the empirical formula
The empirical formula is CH₂O.
6. Calculate the molecular formula.
EF Mass = (12.01 + 2.016 + 16.00) u = 30.03 u
The molecular formula is an integral multiple of the empirical formula.
MF = (EF)ₙ

MF = (CH₂O)₅ = C₅H₁₀O₅
The molecular formula of X is C₅H₁₀O₅.
Answer:
1. Ice at 0 degrees C.
2. N₂ at STP.
3. N₂ at STP.
4. Water vapor at 150 degrees C and 1 atm.
Explanation:
First, we need to remember that entropy (S) is a <em>measure of how spread out or dispersed the energy of a system is among the different possible ways that system can contain energy</em>. The greater the dispersal, the greater is the entropy.
When the temperature is increased, the energies associated with all types of molecular motion increase. Consequently, the entropy of a system always increases with increasing temperature.
With this in mind, we consider the pairs:
1. Since the ice at 0ºC has a greater temperature than the ice at -40 ºC, the first has the higher entropy.
2. The N₂ at STP (that is, 1 atm and 25 ºC) has higher entropy than N₂ at 0ºC and 10 atm because it has a higher temperature and less pressure, which allows a greater dispersal of energy by the molecules of the gas.
3. The N₂ at STP has a higher entropy since it has a higher temperature than N₂ at 0ºC, even though it the first has a lower volume (24,4 L vs. 50 L).
4. The water vapor at 150 ºC and 1 atm have a higher temperature and a lower pressure. This means that its molecules will have an increased molecular motion than the molecules of water vapor at a lower temperature and higher pressure. Therefore, the first has the highest entropy.