Answer:
Check the explanation
Step-by-step explanation:
Let X denotes steel ball and Y denotes diamond
= 1/9( 50+57+......+51+53)
=530/9
=58.89
= 1/9( 52+ 56+....+ 51+ 56)
=543/9
=60.33
difference = d =(60.33- 58.89)
=1.44

s12 = 1/9( 502+572+......+512+532) -9/8 (58.89)2
=31686/8 - 9/8( 3468.03)
=3960.75 - 3901.53
=59.22
s1 = 7.69
s22 = 1/9( 522+ 562+....+ 512+ 562) -9/8 (60.33)2
=33295/8 - 9/8 (3640.11)
=4161.875 - 4095.12
=66.75
s2 =8.17
sample standard deviation for difference is
s=![\sqrt{[(n1-1)s_1^2+ (n2-1)s_2^2]/(n1+n2-2)}](https://tex.z-dn.net/?f=%5Csqrt%7B%5B%28n1-1%29s_1%5E2%2B%20%28n2-1%29s_2%5E2%5D%2F%28n1%2Bn2-2%29%7D)
= ![\sqrt{[(9-1)*59.22+ (9-1)*66.75]/(9+9-2)}](https://tex.z-dn.net/?f=%5Csqrt%7B%5B%289-1%29%2A59.22%2B%20%289-1%29%2A66.75%5D%2F%289%2B9-2%29%7D)
= 
=7.93
sd = 
=
=7.93* 0.47
=3.74
For 95% confidence level
=1.96
confidence interval is

=(1.44 - 1.96* 3.75 , 1.44+1.96* 3.75)
=(1.44 - 7.35 , 1.44 + 7.35)
=(-2.31, 8.79)
There is sufficient evidence to conclude that the two indenters produce different hardness readings.
<em>So</em><em> </em><em>the</em><em> </em><em>right</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>of</em><em> </em><em>option</em><em> </em><em>D</em><em>.</em>
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em>⤴</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>.</em>
150 inches because i say it is because i just need the points to ask another question
Answer:
A) 9
Step-by-step explanation:
R=7x+17
S=4x-6
Q=180-110=70
- 4x-6+7x+17+70=180
- 11x+81=190
- 11x=180-81
- 11x=99
- x=99/11
- x=9
Answer:
A. Minimum = 54, Q1= 69.5, Median = 75, Q3= 106, Maximum = 183
Step-by-step explanation:
Arranging the data set in order from least to greastest we get:
54, 68, 71, 72, 75, 84, 104, 108, 183
From this, we can see that the minimum value is 54 and the maximum value is 183.
Taking a number off one by one on each side of the data set gives the median. In the middle lies 75, so that is our median
To find quartile ranges, split the data set into two where the median lies, then, find the median of those two data sets. The medians will be the values of the upper (Q3) and lower quartiles (Q1).
Q1: 54, 68, 71, 72
68 + 71 = 139
139 ÷ 2 = 69.5
-----
Q3: 84, 104, 108, 183
104 + 108 = 212
212 ÷ 2 = 106
Option A is the only answer with all of these values, therefore, it is the answer.
hope this helps!