Answer:
that best describes the process is C
Explanation:
This problem is a calorimeter process where the heat given off by one body is equal to the heat absorbed by the other.
Heat absorbed by the smallest container
Q_c = m ce (
-T₀)
Heat released by the largest container is
Q_a = M ce (T_{i}-T_{f})
how
Q_c = Q_a
m (T_{f}-T₀) = M (T_{i} - T_{f})
Therefore, we see that the smaller container has less thermal energy and when placed in contact with the larger one, it absorbs part of the heat from it until the thermal energy of the two containers is the same.
Of the final statements, the one that best describes the process is C
since it talks about the thermal energy and the heat that is transferred in the process
The coefficient of expansion is 13 * 10^-6 m per meter length.per oK
The temperature difference = 42 - - 8 = 50 oC
delta T = (42 + 273) - (-8 + 273) = 50 oK
delta L = L * 13* 10^6 m/oK
oK = 50 oK delta L = 19.5 cm = 19.5 cm [1m / 100 cm] = 0.195m
So we need to find the length and it is computed by:
0.195= L * 13 * 10^-6 * 50 L = 0.195 / (13*10^-6*50) L = 300 m
(a) 0.249 (24.9 %)
The maximum efficiency of a heat engine is given by

where
Tc is the low-temperature reservoir
Th is the high-temperature reservoir
For the engine in this problem,


Therefore the maximum efficiency is

(b-c) 0.221 (22.1 %)
The second steam engine operates using the exhaust of the first. So we have:
is the high-temperature reservoir
is the low-temperature reservoir
If we apply again the formula of the efficiency

The maximum efficiency of the second engine is

Answer:
Force is 14.93N along positive y axis.
Explanation:
We know that force 'F' on a current carrying conductor placed in a magnetic field of intensity B is given by

where L is the length of the conductor
Applying values in the equation we have force F =

Thus force is 14.93N along positive y axis.
Explanation:
Solution,
- Mass(m)= 60 kg
- Force (F)= 20 N
- Acceleration (a)= ?
We know that,
- F=ma
- a=F/m
- a=20/60
- a=0.333 m/s²
So, her acceleration is 0.333 m/s².