Answer:
wo = 18.75 rev / s
Explanation:
This is an exercise in endowment kinematics, it indicates that the final angular velocity is w_f = 109 rad / s, the time to reach this velocity is t = 1.87 s and the deceleration a = 4.7 rad / s²
w_f = w₀ - a t
w₀ = w_f + a t
w₀ = 109 + 4.7 1.87
w₀ = 117.8 rad / s
let's reduce to revolutions / s
w₀ = 117.8 rad / s (1 rev / 2pi rad)
w₀ = 18.75 rev / s
Answer:
<h3>The Moon brings perspective. Observing the Moon, and I mean really looking – sitting comfortably, or lying down on a patch of grass and letting her light fill your eyes, it's easy to be reminded of how ancient and everlasting the celestial bodies are. When I do this, it always puts my life into perspective.</h3>
Answer:
a. The thickness of the wire is 2.5 mm.
b. The wire is 0.25 cm thick.
Explanation:
Number of turns of the wire = 10
The length of total turns = 25 mm
a. The thickness of the wire can be determined by;
thickness of the wire = 
= 
= 2.5 mm
Therefore, the wire is 2.5 mm thick.
b. To determine the thickness of the wire in centimetre;
10 mm = 1 cm
So that,
2.5 mm = x
x = 
= 0.25 cm
The wire is 0.25 cm thick.
Answer:

Explanation:
Assuming the pith balls as point charges, we can calculate the repulsive force between them, using Coulomb's law:

We observe that the magnitude of the electric force is directly proportional to the product of the magnitude of both signed charges(
) and inversely proportional to the square of the distance(d) that separates them.
Replacing the given values, where k is the Coulomb constant:
