1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aivan3 [116]
3 years ago
15

What’s 20 plus 43 I’m doing this for no reason btw

Mathematics
1 answer:
lyudmila [28]3 years ago
3 0

Answer:

63

Step-by-step explanation:

add 43 and 20 lol

You might be interested in
Please solve i will give brainiest 100 point question ****** do the whole page please need to pass or i will fail its my final t
dmitriy555 [2]

Answer:

1. Find the difference between the areas.

<u>Area of the small rectangle</u>: (x+2)(x+7)=x^2+7x+2x+14=x^2+9x+14

<u>Area of the big rectangle</u>: (x+9)(x+11)=x^2+11x+9x+99=x^2+20x+99

The difference is: 11x+85

( x^2+20x+99)- (x^2+9x+14)=x^2+20x+99-x^2-9x-14=11x+85

2.

You can solve this question just by looking at the graph.

a) The height is 4 meters.

f(d)=h=-2d^2+7d+4

To find the height of the bleachers, we should consider the moment before the shoot, when the distance is equal to 0.

f(0)=h=-2(0)^2+7(0)+4

h=4

The height is 4 meters.

b) 9 meters.

For d=1

f(1)=h=-2(1)^2+7(1)+4

f(1)=h=-2+7+4

h=9

b) The ball travels 4 meters.

But to calculate it, it is when h=0

0=-2d^2+7d+4

Using the quadratic formula:

$d=\frac{-b\pm \sqrt{b^2-4ac}}{2a}$

$d=\frac{-7 \pm \sqrt{7^2-4\left(-2\right)4}}{2\left(-2\right)}$

$d=\frac{-7\pm\sqrt{81}}{-4}$

$d=\frac{-7\pm9}{-4}$

It will give us to solutions, once it is a quadratic equation, but we are talking about a positive distance.

$d=-\frac{1}{2} \text{ or }d=4$

3.

In this question, we have to find the area of the cylinder and the sphere.

From the information given, we have

a = 5mm and d = 5mm, therefore the radius is 2.5 mm.

The volume of a cylinder:

V=\pi r^2h

V=\pi (2.5)^2 \cdot 5

V=31.25 \pi

V_{c} \approx 98.17 \text{ m}^3

The volume of the sphere:

$V=\frac{4}{3}  \pi r^2$

V_{s} \approx 65.4 \text{ m}^3

The volume of the capsule is approximately 163.57  \text{ m}^3

3 0
4 years ago
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
3 years ago
Question 3 (Multiples and Factors] Three numbers are given below. Use prime factorisation to determine the HCF and LCM 1848 132
Ilia_Sergeevich [38]

Prime factorization involves rewriting numbers as products

The HCF and the LCM of 1848, 132 and 462​ are 66 and 1848 respectively

<h3>How to determine the HCF</h3>

The numbers are given as: 1848, 132 and 462

Using prime factorization, the numbers can be rewritten as:

1848 = 2^3 * 3 * 7 * 11

132 =  2^2 * 3 * 11

462 = 2 * 3 * 7 * 11

The HCF is the product of the highest factors

So, the HCF is:

HCF = 2 * 3 * 11

HCF = 66

<h3>How to determine the LCM</h3>

In (a), we have:

1848 = 2^3 * 3 * 7 * 11

132 =  2^2 * 3 * 11

462 = 2 * 3 * 7 * 11

So, the LCM is:

LCM = 2^3 * 3 * 7 * 11

LCM  = 1848

Hence, the HCF and the LCM of 1848, 132 and 462​ are 66 and 1848 respectively

Read more about prime factorization at:

brainly.com/question/9523814

4 0
2 years ago
Which expression is equivalent to...? Screenshots attached, please help.
BaLLatris [955]

For this case we must simplify the following expression:

\sqrt [3] {64 * a ^ 6 * b ^ 7 * c ^ 9}

We rewrite:

64 = 4 ^ 3\\a ^ 6 = (a ^ 2) ^ 3\\b ^ 6 * b = ((b ^ 2) ^ 3 * b)\\c ^ 9 = (c ^ 3) ^ 3

So:

\sqrt [3] {4 ^ 3 * (a ^ 2) ^ 3 * (b ^ 2) ^ 3 * b * (c ^ 3) ^ 3} =\\\sqrt [3] {4 * a ^ 2 * b ^ 2 * c ^ 3) ^ 3 * b} =

By definition of properties of powers and roots we have:

\sqrt [n] {a ^ m} = a ^ {\frac {m} {n}}

So:

4a ^ 2b ^ 2 c ^ 3 \sqrt [3] {b}

Answer:

Option B

3 0
3 years ago
1. Two sides of a right triangle are 8 and 12 in.
PtichkaEL [24]
I think it is 4
(12-8=4)
5 0
3 years ago
Other questions:
  • The gross income, in dollars, that a company makes from selling x items can be modeled by the expression 3x2 + 2x +4. It costs t
    9·1 answer
  • Which set of angles can form a triangle
    7·1 answer
  • A van can travel 18 miles on each gallon of gasoline. At that rate how many miles can the van travel on 15 gallons of gadoline
    14·2 answers
  • Select the correct answer.
    5·2 answers
  • Find the value of a that makes the statement true. <br>3^-1 ÷ 3^4 = 3^a .<br>A = ?
    10·2 answers
  • What is the value ox X these triangles are similar there are 2 questions
    14·2 answers
  • What is the equation for this line ?
    14·1 answer
  • Can someone help me finish
    7·1 answer
  • Which of the following relationships is a function? A. B. y2 = 2x2 C. D. y2 = x2 – 3x + 4
    10·1 answer
  • Please find the ordered pair for each point.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!