The given equation for the relationship between a planet's orbital period, T and the planet's mean distance from the sun, A is T^2 = A^3.
Let the orbital period of planet X be T(X) and that of planet Y = T(Y) and let the mean distance of planet X from the sun be A(X) and that of planet Y = A(Y), then
A(Y) = 2A(X)
[T(Y)]^2 = [A(Y)]^3 = [2A(X)]^3
But [T(X)]^2 = [A(X)]^3
Thus [T(Y)]^2 = 2^3[T(X)]^2
[T(Y)]^2 / [T(X)]^2 = 2^3
T(Y) / T(X) = 2^3/2
Therefore, the orbital period increased by a factor of 2^3/2
<span>
</span>
The answer is A, you can take 210 times .35 to get how much is taken off. Then you take 210 and subtract it by the answer you previously got
You would get 2 (2x+4). The two factors are the 2, and the (2x+4)
Answer:
you didn't attach a question to answer
Step-by-step explanation: