Answer:
m=36×20
Step-by-step explanation:
A hybrid SUV uses 36 miles per gallon in the city.
The equation that could be used to find how many miles a hybrid SUV can travel in the city on 20 gallons of gas is m=36×20.
Expand the expression as
(<em>s</em> + 1)³/<em>s</em> ⁵ = (<em>s</em> ³ + 3<em>s</em> ² + 3<em>s</em> + 1)/<em>s</em> ⁵
… = 1/<em>s</em> ² + 3/<em>s</em> ³ + 3/<em>s</em> ⁴ + 1/<em>s</em> ⁵
Then taking the inverse transform, you get
LT⁻¹ [1/<em>s</em> ² + 3/<em>s</em> ³ + 3/<em>s</em> ⁴ + 1/<em>s</em> ⁵]
… = LT⁻¹ [1/<em>s</em> ²] + LT⁻¹ [3/<em>s</em> ³] + LT⁻¹ [3/<em>s</em> ⁴] + LT⁻¹ [1/<em>s</em> ⁵]
… = LT⁻¹ [1!/<em>s</em> ²] + 3/2 LT⁻¹ [2!/<em>s</em> ³] + 1/2 LT⁻¹ [3!/<em>s</em> ⁴] + 1/24 LT⁻¹ [4!/<em>s</em> ⁵]
… = <em>t</em> + 3/2 <em>t</em> ² + 1/2 <em>t</em> ³ + 1/24 <em>t</em> ⁴
Answer:
11x-8
Step-by-step explanation:
First distribute the 3 and 2. (Only in the parenthesis!):
3(x-2)+2(4x-1)
3x-6+8x-2
Combine like terms:
3x+8x=11x
-6-2=-8
So the answer is:
11x-8
Answer:
a) ![[-0.134,0.034]](https://tex.z-dn.net/?f=%5B-0.134%2C0.034%5D)
b) We are uncertain
c) It will change significantly
Step-by-step explanation:
a) Since the variances are unknown, we use the t-test with 95% confidence interval, that is the significance level = 1-0.05 = 0.025.
Since we assume that the variances are equal, we use the pooled variance given as
,
where
.
The mean difference
.
The confidence interval is

![= -0.05\pm 1.995 \times 0.042 = -0.05 \pm 0.084 = [-0.134,0.034]](https://tex.z-dn.net/?f=%3D%20-0.05%5Cpm%201.995%20%5Ctimes%200.042%20%3D%20-0.05%20%5Cpm%200.084%20%3D%20%5B-0.134%2C0.034%5D)
b) With 95% confidence, we can say that it is possible that the gaskets from shift 2 are, on average, wider than the gaskets from shift 1, because the mean difference extends to the negative interval or that the gaskets from shift 1 are wider, because the confidence interval extends to the positive interval.
c) Increasing the sample sizes results in a smaller margin of error, which gives us a narrower confidence interval, thus giving us a good idea of what the true mean difference is.
Answer:
I'm not sure but at least i tried