Due to the other pesticides have outgrown their strength on today’s insects. All must be accompanied by mass paperwork for safety.
From the equation q=mCΔT, set the q of copper = to q of water,
So --- mCΔT(copper)=mCΔT(water).
mass (Cu - copper) = 38g
mass (H2O - water) = 15g
C (H2O) = 4.184 J/g*C
ΔΤ (H2O) = 33-22 = 11*C
ΔΤ (Cu) = 33-80 = -47*C (the final temp is the same for both materials - thermal equilibrium)
C (Cu) = ?
So --- 38(-47)C[Cu]=15(4.184)(11)
--- C[Cu]=690.36/(-1786) = 0.3865 J/g*C, or 0.39 in 2 sig figs. (The negative goes away, because specific heats are usually positive)
Answer:
Density rectangular block = 7.47 (Approx) gm/cm³
Explanation:
Given:
Length = 8.335 cm
Width = 1.02 cm
Height = 0.982 cm
Mass = 62.3538 gm
Find:
Density rectangular block
Computation:
Volume of block = lbh
Volume of block = (8.335)(1.02)(0.982)
Volume of block = 8.3486 cm³
Density = Mass / Volume
Density rectangular block = 62.3538 / 8.3486
Density rectangular block = 7.47 (Approx) gm/cm³
Answer:
The correct option is: B. Carbon 5 only
Explanation:
Carvone is a naturally-occurring monoterpenoid consisting of a six-membered cyclic ring. <u>The </u><u><em>carbon-5</em></u><u> of this cyclic ring of Carvone is </u><u><em>chiral, </em></u><u>due to which Carvone exhibits </u><u><em>enantiomerism</em></u><u>.</u>
The two <em>enantiomeric forms</em> of Carvone are: R-(–)-carvone, or L-carvone, and S-(+)-carvone, or D-carvone.
<em><u>These two enantiomeric forms differ in the orientation of the substituents on the chiral carbon-5.</u></em>
<u />
<u>Therefore, the correct option is B. Carbon 5 only.</u>
Answer:
The thermal energy (heat) needed, to raise the temperature of oil of mass 'm' kilogram and specific heat capacity 'c' from 20°C to 180°C is 160·m·c joules
Explanation:
The heat capacity, 'C', of a substance is the heat change, ΔQ, required by a given mass, 'm', of the substance to produce a unit temperature change, ΔT
∴ C = ΔQ/ΔT
ΔQ = C × ΔT
C = m × c
Where;
c = The specific heat capacity
ΔT = The temperature change = T₂ - T₁
∴ ΔQ = m × c × ΔT
Therefore, the thermal energy (heat) needed, ΔQ, to raise the temperature of oil of mass 'm' kilogram and specific heat capacity, 'c' from 20°C to 180°C is given as follows;
ΔQ = m × c × (180° - 20°) = 160° × m·c
ΔQ = 160·m·c joules