Answer:
202 L
Explanation:
Step 1: Write the balanced equation
C₆H₁₂O₆ + 6 O₂(g) ⇒ 6 CO₂(g) + 6 H₂O(l)
Step 2: Calculate the moles corresponding to 270 g of C₆H₁₂O₆
The molar mass of C₆H₁₂O₆ is 180.16 g/mol.
270 g × 1 mol/180.16 g = 1.50 mol
Step 3: Calculate the moles of CO₂ generated from 1.50 moles of glucose
The molar ratio of C₆H₁₂O₆ to CO₂ is 1:6. The moles of CO₂ formed are 6/1 × 1.50 mol = 9.00 mol
Step 4: Calculate the volume of 9.00 moles of CO₂ at STP
The volume of 1 mole of an ideal gas at STP is 22.4 L.
9.00 mol × 22.4 L/mol = 202 L
Answer:
single displacement reaction
Explanation:
coefficient if Ag is 2
after it is balanced
Answer:
Solution A is a Weak Alkali, Solution B is a strong Acid.
Explanation:
At pH 10, the colour is blue, therefore it's a weak alkali.
At pH 1, the colour is red, therefore it's a strong Acid.
Answer:
Promotes Stellar Formation:
-Increased Gravitational Attraction
-Higher Temperature
Does Not Promote Stellar Formation:
-Decreased Gravitational Attraction
-Lower Temperature
Explanation:
Stars need at least three million kelvins to form, and the gravitational attraction helps form the star in the first place.
A. how fast something moves in a specific direction