Answer:
The temperature is 419,1 K
Explanation:
We use the formula PV=nRT T=PV/nR
T=1,5 atm x 12,6 L/0,55 mol x 0,082 l atm/K mol
T= 419,0687361 K
Boric acid, H3BO3, in aqueous solution would only give out one H+ ion. As it is also produce OH ion and by hydrolysis it produces one proton. <span>All the boron compounds (BX3) are having only 6 valence electrons in it and should follow the octet rule by taking another electron.</span>
B(OH)3 + 2 H2O → B(OH)4− + H3O
Explanation:
Neutralization reaction is a type of chemical reaction in which an acid and a base react together to form a salt <u><em>and water</em> </u>as products.
To find pH, use the following formula ---> pH= - log [H+]
so first we need to calculate the [H+] concentration using the OH concentration. to do this, we need to use this formula--> 1.0x10-14= [H+] X [OH-], so we solve for H+ and plug in
[H+]= 1.0X10-14/[OH-]---> 1.0 x 10-14/ 1.0 x 10-4= 1.0 x 10-10
now that we have the H+ concentration, we can solve of pH
pH= -log (1.0x10-10)= 10
answer is A