Hello :)
11,3x+7,2=86,3
⇔11,3x=86,3-7,2=79,1
⇔x=79,1/11,3= 7
The answers is c) 7 :).
Answer:
122 or (3x-4).
Step-by-step explanation:
First, let's take a look at the polygon
The polygon has 5 sides.
We can calculate it's sum of interior angles by using (n-2)*180
Here, number of sides(n)=5
Therefore, (n-2)*180=(5-2)*180=3*180=540
Now that we got that out of the way, let's solve for x
2x+9+3x-8+3x-4+3x-10+2x+7=540
or,13x-6=540
or,13x=546
or,x=42
Now, solve for each interior angle,
2x+9=93
3x-8=118
3x-4=122
3x-10=116
2x+7=91
The largest here s 122 which is 3x-4.
SO, the largest interior angle=122 or (3x-4).
Answer:
≈ 12.05
Step-by-step explanation:
Pythagora
x = √(9² + 8²)
= √(81 + 64)
= √145
≈ 12.05
Answer:
The square roots of 49·i in ascending order are;
1) -7·(cos(45°) + i·sin(45°))
2) 7·(cos(45°) + i·sin(45°))
Step-by-step explanation:
The square root of complex numbers 49·i is found as follows;
x + y·i = r·(cosθ + i·sinθ)
Where;
r = √(x² + y²)
θ = arctan(y/x)
Therefore;
49·i = 0 + 49·i
Therefore, we have;
r = √(0² + 49²) = 49
θ = arctan(49/0) → 90°
Therefore, we have;
49·i = 49·(cos(90°) + i·sin(90°)
By De Moivre's formula, we have;
Therefore;
√(49·i) = √(49·(cos(90°) + i·sin(90°)) = ± √49·(cos(90°/2) + i·sin(90°/2))
∴ √(49·i) = ± √49·(cos(90°/2) + i·sin(90°/2)) = ± 7·(cos(45°) + i·sin(45°))
√(49·i) = ± 7·(cos(45°) + i·sin(45°))
The square roots of 49·i in ascending order are;
√(49·i) = - 7·(cos(45°) + i·sin(45°)) and 7·(cos(45°) + i·sin(45°))