Answer:
2
Step-by-step explanation:
Given
See attachment for chart
Required
Number of off days
To do this, we simply calculate the expected value of the chart.
This is calculated as:

Where
x = days
f = chances
So, we have:



Complete question:
Triangle A″B″C″ is formed using the translation (x + 2, y + 0) and the dilation by a scale factor of one half from the origin. Which equation explains the relationship between segment AB and segment A double prime B double prime?
A) segment a double prime b double prime = segment ab over 2
B) segment ab = segment a double prime b double prime over 2
C) segment ab over segment a double prime b double prime = one half
D) segment a double prime b double prime over segment ab = 2
Answer:
A) segment a double prime b double prime = segment ab over 2.
It can be rewritten as:
Step-by-step explanation:
Here, we are given triangle A″B″C which was formed using the translation (x + 2, y + 0) and the dilation by a scale factor of one half from the origin.
We know segment A"B" equals segment AB multiplied by the scale factor.
A"B" = AB * s.f.
Since we are given a scale factor of ½
Therefore,
The equation that explains the relationship between segment AB and segment A"B" is
Option A is correct
Step-by-step explanation:
the slope of a line is always the factor of x.
here : 1/2
it is the ratio y/x indicating how many units y changes, when x changes a certain angina amount of units when going from one point to another.
a perpendicular slope puts x and y upside-down and flips the sign.
here : -2/1 = -2
so, the equation looks like
y = -2x + b
b is the y-intercept, and we get this by putting the x and y coordinates of the given point into this equation and solve for b :
-1 = -2×-2 + b
-1 = 4 + b
b = -5
the full equation is therefore
y = -2x - 5
we have a maximum at t = 0, where the maximum is y = 30.
We have a minimum at t = -1 and t = 1, where the minimum is y = 20.
<h3>
How to find the maximums and minimums?</h3>
These are given by the zeros of the first derivation.
In this case, the function is:
w(t) = 10t^4 - 20t^2 + 30.
The first derivation is:
w'(t) = 4*10t^3 - 2*20t
w'(t) = 40t^3 - 40t
The zeros are:
0 = 40t^3 - 40t
We can rewrite this as:
0 = t*(40t^2 - 40)
So one zero is at t = 0, the other two are given by:
0 = 40t^2 - 40
40/40 = t^2
±√1 = ±1 = t
So we have 3 roots:
t = -1, 0, 1
We can just evaluate the function in these 3 values to see which ones are maximums and minimums.
w(-1) = 10*(-1)^4 - 20*(-1)^2 + 30 = 10 - 20 + 30 = 20
w(0) = 10*0^4 - 20*0^2 + 30 = 30
w(1) = 10*(1)^4 - 20*(1)^2 + 30 = 20
So we have a maximum at x = 0, where the maximum is y = 30.
We have a minimum at x = -1 and x = 1, where the minimum is y = 20.
If you want to learn more about maximization, you can read:
brainly.com/question/19819849