The lengths (in centimeters) of the opposite side pairs are 59 cm , 38 cm. Option C) is the correct answer.
<u>Step-by-step explanation</u>:
<u>step 1</u> :
Given that,
Quadrilateral ABCD is a parallelogram if both pairs of opposite sides are congruent.
<u>step 2</u> :
The opposite sides are AB and CD respectively.
The another opposite sides are BC and AD respectively.
<u>step 3</u> :
If both pairs of opposite sides are congruent, then
AB = CD
44+3x = 64-x
3x+x = 64-44
4x = 20
x = 5
<u>step 4</u> :
BC = AD
33+y = 48-2y
y+2y = 48-33
3y = 15
y = 5
<u>step 5</u> :
Subsitute x=5 and y=5 in any of the given sides,
CD = 64-x = 64-5 = 59
∴ CD = 59 cm
BC = 33+y = 33+5 = 38
∴ BC = 38 cm
The lengths of the opposite side pairs are 59 cm , 38 cm.
No it is not a order pair. It’s not one because I did the work.
Basically, shift each coordinate one unit to the right (one X over)
You will have to predict the points a little
The second one is the only positive besides 4th but the second and first are the only 1861 so ide have to say the second one
Make a substitution:

Then the system becomes
![\begin{cases}\dfrac{2\sqrt[3]{u}}{u-v}+\dfrac{2\sqrt[3]{u}}{u+v}=\dfrac{81}{182}\\\\\dfrac{2\sqrt[3]{v}}{u-v}-\dfrac{2\sqrt[3]{v}}{u+v}=\dfrac1{182}\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%5Cdfrac%7B2%5Csqrt%5B3%5D%7Bu%7D%7D%7Bu-v%7D%2B%5Cdfrac%7B2%5Csqrt%5B3%5D%7Bu%7D%7D%7Bu%2Bv%7D%3D%5Cdfrac%7B81%7D%7B182%7D%5C%5C%5C%5C%5Cdfrac%7B2%5Csqrt%5B3%5D%7Bv%7D%7D%7Bu-v%7D-%5Cdfrac%7B2%5Csqrt%5B3%5D%7Bv%7D%7D%7Bu%2Bv%7D%3D%5Cdfrac1%7B182%7D%5Cend%7Bcases%7D)
Simplifying the equations gives
![\begin{cases}\dfrac{4\sqrt[3]{u^4}}{u^2-v^2}=\dfrac{81}{182}\\\\\dfrac{4\sqrt[3]{v^4}}{u^2-v^2}=\dfrac1{182}\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%5Cdfrac%7B4%5Csqrt%5B3%5D%7Bu%5E4%7D%7D%7Bu%5E2-v%5E2%7D%3D%5Cdfrac%7B81%7D%7B182%7D%5C%5C%5C%5C%5Cdfrac%7B4%5Csqrt%5B3%5D%7Bv%5E4%7D%7D%7Bu%5E2-v%5E2%7D%3D%5Cdfrac1%7B182%7D%5Cend%7Bcases%7D)
which is to say,
![\dfrac{4\sqrt[3]{u^4}}{u^2-v^2}=\dfrac{81\times4\sqrt[3]{v^4}}{u^2-v^2}](https://tex.z-dn.net/?f=%5Cdfrac%7B4%5Csqrt%5B3%5D%7Bu%5E4%7D%7D%7Bu%5E2-v%5E2%7D%3D%5Cdfrac%7B81%5Ctimes4%5Csqrt%5B3%5D%7Bv%5E4%7D%7D%7Bu%5E2-v%5E2%7D)
![\implies\sqrt[3]{\left(\dfrac uv\right)^4}=81](https://tex.z-dn.net/?f=%5Cimplies%5Csqrt%5B3%5D%7B%5Cleft%28%5Cdfrac%20uv%5Cright%29%5E4%7D%3D81)


Substituting this into the new system gives
![\dfrac{4\sqrt[3]{v^4}}{(\pm27v)^2-v^2}=\dfrac1{182}\implies\dfrac1{v^2}=1\implies v=\pm1](https://tex.z-dn.net/?f=%5Cdfrac%7B4%5Csqrt%5B3%5D%7Bv%5E4%7D%7D%7B%28%5Cpm27v%29%5E2-v%5E2%7D%3D%5Cdfrac1%7B182%7D%5Cimplies%5Cdfrac1%7Bv%5E2%7D%3D1%5Cimplies%20v%3D%5Cpm1)

Then

(meaning two solutions are (7, 13) and (-7, -13))