Answer : The acid dissociation constant Ka of the acid is, 
Explanation :
First we have to calculate the concentration of hydrogen ion.
![pH=-\log [H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D)
Given: pH = 4.06
![4.06=-\log [H^+]](https://tex.z-dn.net/?f=4.06%3D-%5Clog%20%5BH%5E%2B%5D)
![[H^+]=8.71\times 10^{-5}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D8.71%5Ctimes%2010%5E%7B-5%7DM)
The dissociation of acid reaction is:

Initial conc. c 0 0
At eqm. c-cα cα cα
Given:
Degree of dissociation = α = 0.10 % = 0.001
![[H^+]=c\alpha](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dc%5Calpha)


The expression of dissociation constant of acid is:
![K_a=\frac{[H^+][A^-]}{[HA]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH%5E%2B%5D%5BA%5E-%5D%7D%7B%5BHA%5D%7D)

Now put all the given values in this expression, we get:


Thus, the acid dissociation constant Ka of the acid is, 
Molarity is one way of expressing concentration and is equal to the number of moles of the solute per liter of the solution. Therefore,
Molarity = 2.39 mol / L solution
2.39 ( 1.0) = 2.39 mol HF
Hope this answers the question.
structural, plant and animal cells are very similar because they are both eukaryotic cells. they both contain membrane-bound organelle such as the nucleus, endoplasmic, mitochondria etc
4, 3, 1
Explanation:
Sb has four on the right, so it needs four on the left. It's all alone, so <u>4</u>.
O2 comes in pairs, so you only need <u>3</u> of those to get six oxygens.
And 1 is the place holder for the right side since we got the left to match perfectly.