Hi there!!!
So using this rule:
Area = base * height
20ft * 15ft = 300ft^2
↑ ↑
base height
HOPE IT HELPS U!!!!!!!!!
THE ANSWER IS 300 FT^2
~ TRUE BOSS
Option c is correct formula
The matrix is not properly formatted.
However, I'm able to rearrange the question as:
![\left[\begin{array}{ccc}1&1&1|-1\\-2&3&5|3\\3&2&4|1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%261%7C-1%5C%5C-2%263%265%7C3%5C%5C3%262%264%7C1%5Cend%7Barray%7D%5Cright%5D)
Operations:


Please note that the above may not reflect the original question. However, you should be able to implement my steps in your question.
Answer:
![\left[\begin{array}{ccc}1&1&1|-1\\0&5&7|1\\0&-1&1|4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%261%7C-1%5C%5C0%265%267%7C1%5C%5C0%26-1%261%7C4%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
The first operation:

This means that the new second row (R2) is derived by:
Multiplying the first row (R1) by 2; add this to the second row
The row 1 elements are:
![\left[\begin{array}{ccc}1&1&1|-1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%261%7C-1%5Cend%7Barray%7D%5Cright%5D)
Multiply by 2
![2 * \left[\begin{array}{ccc}1&1&1|-1\end{array}\right] = \left[\begin{array}{ccc}2&2&2|-2\end{array}\right]](https://tex.z-dn.net/?f=2%20%2A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%261%7C-1%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%262%262%7C-2%5Cend%7Barray%7D%5Cright%5D)
Add to row 2 elements are: ![\left[\begin{array}{ccc}-2&3&5|3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%263%265%7C3%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}2&2&2|-2\end{array}\right] + \left[\begin{array}{ccc}-2&3&5|3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%262%262%7C-2%5Cend%7Barray%7D%5Cright%5D%20%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%263%265%7C3%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}0&5&7|1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%265%267%7C1%5Cend%7Barray%7D%5Cright%5D)
The second operation:

This means that the new third row (R3) is derived by:
Multiplying the first row (R1) by -3; add this to the third row
The row 1 elements are:
![\left[\begin{array}{ccc}1&1&1|-1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%261%7C-1%5Cend%7Barray%7D%5Cright%5D)
Multiply by -3
![-3 * \left[\begin{array}{ccc}1&1&1|-1\end{array}\right] = \left[\begin{array}{ccc}-3&-3&-3|3\end{array}\right]](https://tex.z-dn.net/?f=-3%20%2A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%261%7C-1%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-3%26-3%26-3%7C3%5Cend%7Barray%7D%5Cright%5D)
Add to row 2 elements are: ![\left[\begin{array}{ccc}3&2&4|1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%262%264%7C1%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}-3&-3&-3|3\end{array}\right] + \left[\begin{array}{ccc}3&2&4|1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-3%26-3%26-3%7C3%5Cend%7Barray%7D%5Cright%5D%20%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%262%264%7C1%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}0&-1&1|4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%26-1%261%7C4%5Cend%7Barray%7D%5Cright%5D)
Hence, the new matrix is:
![\left[\begin{array}{ccc}1&1&1|-1\\0&5&7|1\\0&-1&1|4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%261%7C-1%5C%5C0%265%267%7C1%5C%5C0%26-1%261%7C4%5Cend%7Barray%7D%5Cright%5D)
Answer:
1 and 4 are correct :)
Step-by-step explanation:
Hope this helps <span>1) </span><span>Equations with negative values for a</span><span> produce graphs that open down and equations with a positive values for a</span> produce graphs that open up.
<span>2)<span> </span></span><span>As the absolute value of a gets larger our graphs become more narrow (they shoot towards positive or negative infinity faster). This is more interesting than it might appear. If you consider the second derivative of any quadratic it will be the a</span><span> value. The second derivative represents acceleration, so the larger the a value the faster the increase of velocity and accordingly a quicker progression towards positive or negative infinity. Check this out in graphing calculator, press play to vary the value of a from -20 to 20. Notice that when the value of a approaches zero, the approximates a line, and of course when a is 0 we have the line y</span><span> = 2x</span><span> – 1.</span>