Hello,
Placing a rat in a cage where electrical shocks over which the rat has no control are occasionally administered through the floor is a way to create → <span>learned helplessness
Good luck :)</span>
Answer:
Natural selection will favor red deer that produce a dozen or more offspring that survive for at least a year.
Explanation:
Natural selection results in adaptation, which means the increase of the aptitude phenotype. Aptitude is the contribution of each genotype to the next generation.
Natural selection is the result between the individual phenotype and the environment that determines the destiny of genes. It is the differential capability of individuals to leave offspring.
Aptitude (or fitness) is the phenotype that results in the survival, fertility, and capability of having a mate. It is a way of measuring the individual ability to leave fertile offspring. Aptitude must be significant to the natural selection act in its favor.
Natural selection, eventually, will favor red deer that produce a dozen or more offspring that survive for at least a year. These animals have more chances of leaving fertile descendants that will be able to grow, develop, survive, and reproduce. They have a higher aptitude than those individuals that only have four fawns during their lifetimes. These animals have fewer probabilities of leaving survival descendants able to reproduce.
Half life formula
The number of unstable nuclei remaining after time t can be determined according to this equation:
N(t) = N(0) * 0.5^(t/T)
where:
N(t) is the remaining quantity of a substance after time t has elapsed.
N(0) is the initial quantity of this substance.
T is the half-life.
It is also possible to determine the remaining quantity of a substance using a few other parameters:
N(t) = N(0) * e^(-t/τ)
N(t) = N(0) * e^(-λt)
τ is the mean lifetime - the average amount of time a nucleus remains intact.
λ is the decay constant (rate of decay).
All three of the parameters characterizing a substance's radioactivity are related in the following way:
T = ln(2)/λ = ln(2)*τ
How to calculate the half life
Determine the initial amount of a substance. For example, N(0) = 2.5 kg.
Determine the final amount of a substance - for instance, N(t) = 2.1 kg.
Measure how long it took for that amount of material to decay. In our experiment, we observed that it took 5 minutes.
Input these values into our half life calculator. It will compute a result for you instantaneously - in this case, the half life is equal to 19.88 minutes.
If you are not certain that our calculator returned the correct result, you can always check it using the half life formula.