The reason is that a closed system has nothing going in or out and water retains energy very well also water it polar so it is attracted to itself. It doesnt like contact with other things.
So it's likely to be C
Answer:
Induced current, I = 0.5 A
Explanation:
It is given that,
number of turns, N = 20
Area of wire, 
Initial magnetic field, 
Final magnetic field, 
Time taken, t = 2 s
Resistance of the coil, R = 0.4 ohms
We know that due to change in magnetic field and emf will be induced in the coil. Its formula is given by :

Where





Let I is the induced current in the wire. It can be calculated using Ohm's law as :



I = 0.5 A
So, the magnitude of the induced current in the coil is 0.5 A. Hence, this is the required solution.
Answer:
v = 306.76 Km/h
Explanation:
given,
height of the aircraft = 3000 m
differential pressure reading = 3300 N/m²
density of air = 0.909 Kg/m³
speed of aircraft = ?
Assuming the air flowing above air craft is in-compressible, irrotational and steady so, we can use Bernoulli's equation to solve the problem.
using Bernoulli's equation

where ρ is the density of the air at 3000 m



v = 85.21 m/s

v = 306.76 Km/h
Our data are,
State 1:

State 2:

We know as well that 
To find the mass we apply the ideal gas formula, which is given by

Re-arrange for m,

Because of the pressure, temperature and volume ratio of state 1 and 2, we have to

Replacing,

For conservative energy we have, (Cv = 0.718)
