Wow ! This question reads like it might have come from one of
Faraday or Maxwell's original laboratory notebooks.
Choice-A is the correct one, when you consider what "conductance"
means. Conductance is just 1/resistance .
So when you see
"A) Current is proportionate to the conductance of the circuit and
precisely proportional to the voltage applied across the circuit."
what it's saying is
"Current is inversely proportional to the resistance of the circuit, and
directly proportional to the voltage applied across the circuit."
If you write the equation for all those words, it looks like
I = V / R
and that's correct.
Answer:
The ratio of the new potential energy to the potential energy before the insertion of the dielectric is 0.58
Explanation:
Given that,
Length of plates = 8 cm
Width = 5.52 cm
Distance = 1.99 cm
Dielectric constant = 2.6
Length = 4.4 cm
Potential = 0.8 V
We need to calculate the initial capacitance
Using formula of capacitance

Put the value into the formula


We need to calculate the final capacitance
Using formula of capacitance

Put the value into the formula


We need to calculate the ratio of the new potential energy to the potential energy before the insertion of the dielectric
Using formula of energy

Put the value into the formula


Hence, The ratio of the new potential energy to the potential energy before the insertion of the dielectric is 0.58
Answer is C, one student has more mass, therefore more inertia.
Answer:
the answer is fulcrum because
Explanation:
lever is a simple machine consisting of a bar that rotates around a fixed point. The fixed point of a lever is called the fulcrum. Like other machines, a lever makes work easier by changing the force applied to the machine or the distance over which the force is applied