Answer:
the distance between the particles and also the amount of electric charge they carry.
Explanation:
yup
Solve for acceleration:
<em>a</em> = (21.4 m/s - 33.8 m/s) / (4.7 s)
<em>a</em> ≈ -2.6 m/s²
Solve for force:
<em>F</em> = (1400 kg) <em>a</em> ≈ -3700 N
The minus sign tells you the force points in the opposite direction of the car's motion. Its magnitude is always positive, so <em>F</em> = 3700 N.
Answer:
8.75
Explanation:
First, find the force of friction.
Kinetic energy = work done by friction
½ mv² = Fd
½ (3.9 kg) (2.9 m/s)² = F (1.4 m)
F = 11.7 N
Next, find the distance at the new velocity.
Kinetic energy = work done by friction
½ mv² = Fd
½ (3.9 kg) (2.5 × 2.9 m/s)² = (11.7 N) d
d = 8.75 m
Answer:
Increasing the resistance
Explanation: