Answer: The number is 26.
Step-by-step explanation:
We know that:
The nth term of a sequence is 3n²-1
The nth term of a different sequence is 30–n²
We want to find a number that belongs to both sequences (it is not necessarily for the same value of n) then we can use n in one term (first one), and m in the other (second one), such that n and m must be integer numbers.
we get:
3n²- 1 = 30–m²
Notice that as n increases, the terms of the first sequence also increase.
And as n increases, the terms of the second sequence decrease.
One way to solve this, is to give different values to m (m = 1, m = 2, etc) and see if we can find an integer value for n.
if m = 1, then:
3n²- 1 = 30–1²
3n²- 1 = 29
3n² = 30
n² = 30/3 = 10
n² = 10
There is no integer n such that n² = 10
now let's try with m = 2, then:
3n²- 1 = 30–2² = 30 - 4
3n²- 1 = 26
3n² = 26 + 1 = 27
n² = 27/3 = 9
n² = 9
n = √9 = 3
So here we have m = 2, and n = 3, both integers as we wanted, so we just found the term that belongs to both sequences.
the number is:
3*(3)² - 1 = 26
30 - 2² = 26
The number that belongs to both sequences is 26.
The shape looks like a box with a chunk taken out of it. So, to find the volume of the shape, let us find the volume of the hypothetical "perfect" box and then subtract the volume of the chunk.
Volume of the box = 15x6x12 = 1080 cm³
Volume of the chunk = 10x6x4 = 240 cm³
Volume of weird shape = 1080-240 = 840 cm³
Answer: 840 cm³
Answer:
what expression nothing shows up
Step-by-step explanation: