Answer:
c. judgment regarding a hazard
Explanation:
Answer:
The work done on the system can be accounted for by;
Both
and 
Explanation:
The speed of the crate = Constant
Therefore, the acceleration of the crate = 0 m/s²
The net force applied to the crate,
= 0
Therefore, the force of with which the crate is pulled = The force resisting the upward motion of the crate
However, we have;
The force resisting the upward motion of the crate = The weight of the crate + The frictional resistance of the ramp due to the surface contact between the ramp and the crate
The work done on the system = The energy to balance the resisting force = The weight of the crate × The height the crate is raised + The heat generated as internal energy to the system
The weight of the crate × The height the crate is raised = Gravitational Potential Energy = 
The heat generated as internal energy to the system = 
Therefore;
The work done on the system =
+
.
Answer:
Tension in string equals 14.715 Newtons
Explanation:
The situation is represented in the figure attached below:
For equilibrium of the clothes along y- axis we have

Applying values we get

Complete Question
In an action movie, the villain is rescued from the ocean by grabbing onto the ladder hanging from a helicopter. He is so intent on gripping the ladder that he lets go of his briefcase of counterfeit money when he is 130 m above the water. If the briefcase hits the water 6.0 s later, what was the speed at which the helicopter was ascending?
Answer:
The speed of the helicopter is 
Explanation:
From the question we are told that
The height at which he let go of the brief case is h = 130 m
The time taken before the the brief case hits the water is t = 6 s
Generally the initial speed of the briefcase (Which also the speed of the helicopter )before the man let go of it is mathematically evaluated using kinematic equation as
Here s is the distance covered by the bag at sea level which is zero
=>
=> 
=> 
Answer:
The deceleration of the dragster upon releasing the parachute such that the wheels at B are on the verge of leaving the ground is 16.33 m/s²
Explanation:
The additional information to the question is embedded in the diagram attached below:
The height between the dragster and ground is considered to be 0.35 m since is not given ; thus in addition win 0.75 m between the dragster and the parachute; we have: (0.75 + 0.35) m = 1.1 m
Balancing the equilibrium about point A;
F(1.1) - mg (1.25) = 
- 1200(9.8)(1.25) = 1200a(0.35)
- 14700 = 420 a ------- equation (1)
--------- equation (2)
Replacing equation 2 into equation 1 ; we have :

1320 a - 14700 = 420 a
1320 a - 420 a =14700
900 a = 14700
a = 14700/900
a = 16.33 m/s²
The deceleration of the dragster upon releasing the parachute such that the wheels at B are on the verge of leaving the ground is 16.33 m/s²