Answer:
None of the above.
The correct answer would be momentum
Answer:
D=387.28m
Explanation:
At the moment where the toss is made
, so we need both equations:
For the red car:
With initial speed of 0 and acceleration of 6.12m/s^2.
For the green car:
With
and Xo = 200m
Since both positions will be the same:
Solving for t:
t1 = -5.8s and t1 =11.25s
Replacing t = 11.25 on either equation to find the displacement:

Answer:
The answer is given below
Explanation:
Things provided in the statement:
Pressure <em>P1</em> = 120 kPa and <em>P2</em> = 5.6 MP or 5600 kPa
Power, <em>W</em> = 7 kW
Elevation difference = ∆z = 10 m
Mass of flow = m˙
So potential energy changes may be significant
Specific volume of water V= 0.001 m³/kg
Now putting the values in the formula
Power, <em>W </em>= m˙ x V (<em>P1 - P2</em>) + m˙ x g x ∆z
7 = m˙ x 0.001 (5600 - 120 ) + m˙ x 9.8 x 10 x (1 kJ/kg/ 1000 m^2/s^2)
7 = m˙ x 5.48 + m˙ x 0.098
7 = m ˙x 5.38
m˙ = 7/5.38
So mass flow m˙ = 1.301 kJ/s
Answer:
Ff = u M g frictional force where u = .62
1/2 M v^2 kinetic energy of water bottle at release
Ff * d = 1/2 M v^2 = u M g d work to stop equals initial kinetic energy
v^2 = 2 u g d = 2 * .62 * 9.8 * 12 = 146 m^2 / s^2
v = 12.1 m/s