Answer:
B
Explanation:
Wave length is the height perpendicular verically of a wave
Applying Newtons version of Kepler's third law or the orbital velocity law to the star orbiting 40000 light years from the center of the Milky Way Galaxy allows us to determine the mass of the Milky Way Galaxy that lies within 40000 light years in the galactic center.
<h3>
</h3><h3>What is orbital velocity law?</h3>
The orbital velocity law states that, the orbital velocity is directly proportional to the mass of the body for which it is being calculated and inversely proportional to the radius of the body. Earths orbital velocity near its surface is around 8km/sec if the air resistance is disregarded.
In space exploration, orbital velocity is a crucial topic. Space authorities heavily rely on it to comprehend how to launch satellites. It aids scientists in figuring out the velocities at which satellites must orbit a planet or other celestial body to prevent collapsing into it. The speed at which one body orbits the other body is known as the orbital velocity. The term "orbit" refers to an object's consistent circular motion around the Earth. The distance between the object and the earth's centre determines the orbit's velocity.
To know more about orbital velocity law, refer brainly.com/question/11353717
#SPJ4
My answer i believe is simply 250 Hz, because sounds or vibrations travel in 1 cycle/second, meaning the number of cycles, in your case 250, divided by the time,1 second, will ultimately be 250 Hertz. For every Cycle/second it will equal 1 Hz, so 250/1 = 250Hz
Answer:
stars share a gravitational force with the galaxy while nearby galaxies do not share a gravitational field.
Explanation:
stars will not collide because they are bound by a gravitational orbit around the galaxy
Answer:
v = 5.75 x 10⁶ m/s
Explanation:
The radius (r) of the circular orbit taken by a charged particle is related to its speed perpendicular to a magnetic field of strength B, and is given by
r =
--------------(i)
Where,
q = charge of the particle
m = mass of the particle
Making v subject of the formula in equation (i) above gives
v =
-------------------(ii)
Given;
r = 20cm = 0.2m
B = 0.3T
v = unknown
q = charge of proton = 1.6 x 10⁻¹⁹ C
m = mass of the proton = 1.67 x 10⁻²⁷kg
Substitute the values of m, q, B and r into equation (ii) above to get;
v = 
Solving for v gives:
v = 5.75 x 10⁶ m/s
Therefore, the velocity of the proton is 5.75 x 10⁶ m/s