Answer:
The force is
Explanation:
From the question we are told that
The tangential resistive force is 
The mass of the wheel is m = 1.80 kg
The diameter of the wheel is 
The diameter of the sprocket is 
The angular acceleration considered is 
Generally the radius of the wheel is

=> 
=> 
Generally the radius of the sprocket is

=> 
=> 
Generally the moment of inertia of the wheel is mathematically represented as

=> 
=> 
Generally the torque experienced by the wheel due to the forces acting on it is mathematically represented as

Here
is the force acting on the sprocket
So


Generally the torques that will cause the wheel to move with
is mathematically represented as

So

Answer:
(a) θ1 = 942.5rad, (b) θ2 = 13195 rad
Explanation:
(a) Given
ωo = 0 rad/s
ω = 3600rev/min = 3600×2(pi)/60 rad/s
ω = 377rad/s
t1 = 5s
θ1 = (ω + ωo)t/2
θ1 = (377 +0)×5/2
θ1 = 942.5 rads
(b) ωo = 377rad/s
ω = 0 rad/s
t2 = 70s
θ2 = (ω + ωo)t/2
θ2 = (377 +0)×70/2
θ2 = 13195 rad
Answer: 
Explanation:
Given
At an elevation of
, spacecraft is dropping vertically at a speed of 
Final velocity of the spacecraft is 
using equation of motion i.e. 
Insert the values

Therefore, magnitude of acceleration is
.

= Joules ÷ (0.5×Kilograms)
14J ÷ 8.5 = 1.64705882
Remember, 1.64705882 = v², so we need to find the square root.
The square root of 1.64705882 is 1.283377894464448
Hope this helps!
Answer:
35 km/hr
Explanation:
Average speed = (total of the speed)/(the sets of speeds given)
Direction does not matter in this instance since speed is only magnitude,
Average speed = (30 + 40)/2
Average speed = 70 ÷ 2
= 35 km/hr