In the presence of heat, copper (II) hydroxide decomposes in to copper (II) oxide.
Cu(OH)₂ (s) ----> CuO (s) + H₂O (l)
upon decomposition, water is removed from Cu(OH)₂
the amount of Cu(OH)₂ decomposed - 3.67 g
number of moles of Cu(OH)₂ - 3.67 g / 97.5 g/mol = 0.038 mol
stoichiometry of Cu(OH)₂ to CuO is 1:1
therefore number of CuO moles formed are - 0.038 mol
CuO reacts with sulfuric acid to form CuSO₄
CuO + H₂SO₄ ---> CuSO₄ + H₂O
stoichiometry of CuO to H₂SO₄ is 1:1
therefore number of H₂SO₄ moles that should react is 0.038 mol
the molarity of H₂SO₄ is 3M
this means that in 1000 ml - 3 mol of H₂SO₄ present
so if 3 mol are present in 1000 ml
then volume for 0.038 mol = 1000/3 * 0.038
= 12.67 ml
Wind because it’s abiotic which means non living
Mg + 2 HCl ------> MgCl₂ +H₂O
Explanation:
The given data is as follows.
coefficient of volume expansion of glycerin (
) = 
linear expansion coefficient of aluminum,
=
Volume = 100 
The increase in volume of the cup will be calculated as follows.

= 
=
= 0.0759 
Formula for increase in volume of glycerine is as follows.

= 
= 0.5610 
Therefore, volume of glycerin spilled is calculated as follows.

= (0.5610 - 0.0759) 
= 0.4851 
Thus, we can conclude that 0.4851
glycerin will spill out of the cup.
<h3>
Answer:</h3>
= 19.712 kJoules
<h3>
Explanation:</h3>
- Heat of vaporization refers to the amount of heat required to change a unit mass of a substance from liquid to gaseous state without change in temperature.
To calculate the amount of heat, we use,
Amount of heat = Mass × Heat of vaporization
Q = m×Lv
Given;
Mass of liquid Zinc = 11.2 g
Lv of liquid Zinc = 1.76 kJ/g
Therefore;
Q = 11.2 g × 1.76 kJ/g
= 19.712 kJ
Thus, the amount of heat needed to boil 11.2 g of zinc is 19.712 kilo-joules.