Explanation:
an increase in concentration increases the rate of the reaction. This is because there are more reactant particles available which allows for more effective collisions between reactant particles in a given period of time. More effective collisions bring about a faster rate of reaction.
The ground state electron configuration is the arrangement of electrons around the nucleus of an atom with lower energy levels. The electrons occupying the orbitals of varying energy levels naturally falls towards the lowest energy state or ground state.
Answer:
the answer is b Li + Cl2 .....
Answer:
B) is reduced.
Explanation:
Oxidation:
Oxidation involve the removal of electrons and oxidation state of atom of an element is increased.
Reduction:
Reduction involve the gain of electron and oxidation number is decreased.
Consider the following reactions.
4KI + 2CuCl₂ → 2CuI + I₂ + 4KCl
the oxidation state of copper is changed from +2 to +1 so copper get reduced and it is oxidizing agent.
CO + H₂O → CO₂ + H₂
the oxidation state of carbon is +2 on reactant side and on product side it becomes +4 so carbon get oxidized and it is reducing gent.
Oxidizing agents:
Oxidizing agents oxidize the other elements and itself gets reduced.
Reducing agents:
Reducing agents reduced the other element are it self gets oxidized.
Answer:
The answer is "2%"
Explanation:
Equation:


Formula:
![Ka = \frac{[H^{+}][NO_2^{-}]}{[HNO_2]}](https://tex.z-dn.net/?f=Ka%20%3D%20%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%5BNO_2%5E%7B-%7D%5D%7D%7B%5BHNO_2%5D%7D)
Let
at equilibrium

therefore,
![[H^{+}] = 2.0\times 10^{-2} \ M = 0.02 \ M](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3D%202.0%5Ctimes%2010%5E%7B-2%7D%20%5C%20M%20%3D%200.02%20%5C%20M)
Calculating the % ionization:
![= \frac{([H^{+}]}{[HNO_2])} \times 100 \\\\= \frac{0.02}{1}\times 100 \\\\= 2\%\\\\](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B%28%5BH%5E%7B%2B%7D%5D%7D%7B%5BHNO_2%5D%29%7D%20%5Ctimes%20100%20%5C%5C%5C%5C%3D%20%5Cfrac%7B0.02%7D%7B1%7D%5Ctimes%20100%20%5C%5C%5C%5C%3D%202%5C%25%5C%5C%5C%5C)