Since each Chlorine molecule is -1 and wants to gain an electron, 2 Chlorine atoms like to come together to form Cl2 by sharing 2 electrons each to form a single bond between the 2 atoms. Since both Chlornine has the same electronegativity, the bond is non-polar covalent since there electrons are evenly shared.
Answer:
It would move either left or right
Explanation: Taking assumption that,
Fructose + ATP fructose - 6 - phosphate + ADP (The standard free energy of hydrolysis for fructose-6-phosphate is - 15.9 kJ/mol.) 3 - phosphoglycerate + ATP 1,3 - bisphosphoglycerate + ADP (The standard free energy of hydrolysis for 1,3-bisphosphoglycerate is - 4 9.3 kJ/mol.) pyruvate + ATP phosphoenolpyruvate + ADP (The standard free energy of hydrolysis for phosphoenolpyruvate -is -61.9 kJ/mol.)
H2S donates a proton, therefore it is a Brønsted-Lowry base; CH3NH2 accepts a proton, so it’s a Brønsted-Lowry base.
<span>Answer:
For this problem, you would need to know the specific heat of water, that is, the amount of energy required to raise the temperature of 1 g of water by 1 degree C. The formula is q = c X m X delta T, where q is the specific heat of water, m is the mass and delta T is the change in temperature. If we look up the specific heat of water, we find it is 4.184 J/(g X degree C). The temperature of the water went up 20 degrees.
4.184 x 713 x 20.0 = 59700 J to 3 significant digits, or 59.7 kJ.
Now, that is the energy to form B2O3 from 1 gram of boron. If we want kJ/mole, we need to do a little more work.
To find the number of moles of Boron contained in 1 gram, we need to know the gram atomic mass of Boron, which is 10.811. Dividing 1 gram of boron by 10.811 gives us .0925 moles of boron. Since it takes 2 moles of boron to make 1 mole B2O3, we would divide the number of moles of boron by two to get the number of moles of B2O3.
.0925/2 = .0462 moles...so you would divide the energy in KJ by the number of moles to get KJ/mole. 59.7/.0462 = 1290 KJ/mole.</span>
Answer:
H2SO4 + Al(OH)3 = Al2(SO4)3 + H2O
Explanation: