Answer:
If there are 2 chlorine atoms per molecule then I think that the answer is 26 chlorine atoms.
A)
NH⁴⁺(aq) + H₂O(l) ⇌ NH₃(aq) + H₃0⁺<span>(aq)
- acid </span>a species that able to donate (H+): NH⁴⁺
- base a species that is able to accept a proton (H+): H₂O
- conjugate base a species formed when acid donates a proton (H+): NH₃
- conjugate acid a species formed by a base accepts a proton (H+): H₃0⁺
b)
CN⁻(aq) + H₂O(l) ⇌ HCN(aq) + OH⁻(aq)
- base a species that is able to accept a proton (H+): CN⁻
- acid a species that able to donate (H+): H₂O
- conjugate acid a species formed by a base accepts a proton (H+): HCN
- conjugate base a species formed when acid donates a proton (H+): OH⁻
Answer:
The three-step synthesis of trans-2-pentene from acetylene is as follows.
<u>Step -1:</u> Formation of higher order terminal alkyne on reaction with sodium acetylides with haloalkanes.
<u>Step -2:</u> Formation terminal alkyne to nonterminal alkynes.
<u>Step -3:</u> Formation of trans-pent - 2-pent-ene by reduction.
Explanation:
Synthesis of trans-pent-2-yne from ethyne takes place is mainly a three step synthesis which involves formation of higher order terminal alkyne on reaction with sodium acetylides with haloalkane. Second step involves the further alkylation of terminal alkynes to higher order nonterminal alkynes and the third step involves the formation of trans-2-ene by dissolving reduction method.
The chemical reaction of each step of chemical reactions is as follows.