Answer:
launch- The first stage is ignited at launch and burns through the powered ascent until its propellants are exhausted. The first stage engine is then extinguished, the second stage separates from the first stage, and the second stage engine is ignited. The payload is carried atop the second stage into orbit
powered ascent-The first stage is ignited at launch and burns through the powered ascent until its propellants are exhausted. The first stage engine is then extinguished, the second stage separates from the first stage, and the second stage engine is ignited. The payload is carried atop the second stage into orbit
coasting flight-
When the rocket runs out of fuel, it enters a coasting flight. The vehicle slows down under the action of the weight and drag since there is no longer any thrust present. The rocket eventually reaches some maximum altitude which you can measure using some simple length and angle measurements and trigonometry.
ejection charge-At the end of the delay charge, an ejection charge is ignited which pressurizes the body tube, blows the nose cap off, and deploys the parachute. The rocket then begins a slow descent under parachute to a recovery. The forces at work here are the weight of the vehicle and the drag of the parachute.
slow decent- slow downs (i guess)
recovery-A recovery period is typically characterized by abnormally high levels of growth in real gross domestic product, employment, corporate profits, and other indicators. This is a turning point from contraction to expansion and often results in an increase in consumer confidence
Explanation:
Answer:
B - Poor
Explanation:
As you get higher up, There is less oxygen which causes the engine to create less power.
Answer:
power = 49.95 W
and it is self locking screw
Explanation:
given data
weight W = 100 kg = 1000 N
diameter d = 20mm
pitch p = 2mm
friction coefficient of steel f = 0.1
Gravity constant is g = 10 N/kg
solution
we know T is
T = w tan(α + φ )
...................1
here dm is = do - 0.5 P
dm = 20 - 1
dm = 19 mm
and
tan(α) =
...............2
here lead L = n × p
so tan(α) =
α = 3.83°
and
f = 0.1
so tanφ = 0.1
so that φ = 5.71°
and now we will put all value in equation 1 we get
T = 1000 × tan(3.83 + 5.71 )
T = 1.59 Nm
so
power =
.................3
put here value
power =
power = 49.95 W
and
as φ > α
so it is self locking screw
Answer:
1700kJ/h.K
944.4kJ/h.R
944.4kJ/h.°F
Explanation:
Conversions for different temperature units are below:
1K = 1°C + 273K
1R = T(K) * 1.8
= (1°C + 273) * 1.8
1°F = (1°C * 1.8) + 32
Q/delta T = 1700kJ/h.°C
T (K) = 1700kJ/h.°C
= 1700kJ/K
T (R) = 1700kJ/h.°C
= 1700kJ/h.°C * 1°C/1.8R
= 944.4kJ/h.R
T (°F) = 1700kJ/h.°C
= 1700kJ/h.°C * 1°C/1.8°F
= 944.4kJ/h.°F
Note that arithmetic operations like subtraction and addition of values do not change or affect the value of a change in temperature (delta T) hence, the arithmetic operations are not reflected in the conversion. Illustration: 5°C - 3°C
= 2°C
(273+5) - (273+3)
= 2 K