1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Strike441 [17]
3 years ago
15

H2O enters a conical nozzle, operates at a steady state, at 2 MPa, 300 oC, with the inlet velocity 30 m/s and the mass flow rate

is 50 kg/s. The exit pressure and temperature are 0.6 MPa and 160 oC, respectively. Please determine the inlet radius as well as the exit flow velocity. Hint: While the effect of heat transfer can be neglected, the change of the kinetic energy should be accounted for.
Engineering
1 answer:
Colt1911 [192]3 years ago
7 0

Answer:

The flow velocity at outlet is approximately 37.823 meters per second.

The inlet radius of the nozzle is approximately 0.258 meters.

Explanation:

A conical nozzle is a steady state device used to increase the velocity of a fluid at the expense of pressure. By First Law of Thermodynamics, we have the energy balance of the nozzle:

Energy Balance

\dot m \cdot \left[\left(h_{in}+\frac{v_{in}^{2}}{2} \right)-\left(h_{out}+\frac{v_{out}^{2}}{2} \right)\right]= 0 (1)

Where:

\dot m - Mass flow, in kilograms per second.

h_{in}, h_{out} - Specific enthalpies at inlet and outlet, in kilojoules per second.

v_{in}, v_{out} - Flow speed at inlet and outlet, in meters per second.

It is recommended to use water in the form of superheated steam to avoid the appearing of corrosion issues on the nozzle. From Property Charts of water we find the missing specific enthalpies:

Inlet (Superheated steam)

p = 2000\,kPa

T = 300\,^{\circ}C

h_{in} = 3024.2\,\frac{kJ}{kg}

\nu_{in} = 0.12551\,\frac{m^{3}}{kg}

Where \nu_{in} is the specific volume of water at inlet, in cubic meters per kilogram.  

Outlet (Superheated steam)

p = 600\,kPa

T = 160\,^{\circ}C

h_{out} = 2758.9\,\frac{kJ}{kg}

If we know that \dot m = 50\,\frac{kJ}{kg}, h_{in} = 3024.2\,\frac{kJ}{kg}, h_{out} = 2758.9\,\frac{kJ}{kg} and v_{in} = 30\,\frac{m}{s}, then the flow speed at outlet is:

35765-25\cdot v_{out}^{2} = 0 (2)

v_{out} \approx 37.823\,\frac{m}{s}

The flow velocity at outlet is approximately 37.823 meters per second.

The mass flow is related to the inlet radius (r_{in}), in meters, by this expression:

\dot m = \frac{\pi \cdot v_{in}\cdot r_{in}^{2} }{\nu_{in}} (3)

If we know that \dot m = 50\,\frac{kJ}{kg}, v_{in} = 30\,\frac{m}{s} and \nu_{in} = 0.12551\,\frac{m^{3}}{kg}, then the inlet radius is:

r_{in} = \sqrt{\frac{\dot m\cdot \nu_{in}}{\pi\cdot v_{in}}}

r_{in}\approx 0.258\,m

The inlet radius of the nozzle is approximately 0.258 meters.  

You might be interested in
Since the passing of the Utah GDL laws in 1999:
wlad13 [49]
The answer is b, I hope this helps you
7 0
3 years ago
Tahir travel twice as far as ahmed, but onley one third as fast. Ahmed starts travel on tuesday at noon at point x to point z 30
shepuryov [24]

Answer:

6:00 pm the next day

Explanation:

Given that

Tahir traveled twice as far as Ahmed. We say,

Ahmed traveled a distance, D

Tahir would travel a distan, 2D

Tahir traveled 1/3 as fast as Ahmed, so we say

Ahmed traveled at a speed, S

Tahir would travel at a speed, S/3

If Ahmed starts travel on tuesday at noon at point x to point z 300km, by 9:00pm,

Time taken by Ahmed to travel is

9:00 pm - 12:00 pm = 9 hours

Ahmed, traveled 300 km in 9 hours, meaning he traveled at 33.3 km in an hour.

Speed, S that Ahmed traveled with is 33.3 km/h

Remember, we stated that Tahir travels at a speed of S/3, that is, The speed of Tahir is

33.3/3 = 11.1 km/h.

300 km would then be traveled in 300 km/11.1 km/h = 27 hours.

Tahir started traveling, 3 hours after Ahmed, that is 12:00 pm + 3:00 hrs = 3:00 pm, and if he's to spend 27 hours on the journey he would reach destination z at 6:00 pm the next day

7 0
3 years ago
A steel bar 100 mm (4.0 in.) long and having a square cross section 20 mm (0.8 in.) on an edge is pulled intension with a load o
grigory [225]

Answer:

The elastic modulus of the steel is 139062.5 N/in^2

Explanation:

Elastic modulus = stress ÷ strain

Load = 89,000 N

Area of square cross section of the steel bar = (0.8 in)^2 = 0.64 in^2

Stress = load/area = 89,000/0.64 = 139.0625 N/in^2

Length of steel bar = 4 in

Extension = 4×10^-3 in

Strain = extension/length = 4×10^-3/4 = 1×10^-3

Elastic modulus = 139.0625 N/in^2 ÷ 1×10^-3 = 139062.5 N/in^2

7 0
3 years ago
What type of engineer makes sure equipment is safe and operational
zvonat [6]

Answer:

mechanical engineer is the best answer

8 0
3 years ago
Responding to the campaign of 4 classes, 7A, 7B, 7C, 7D contributed the amount of support proportional to the numbers 8,6;7;5 kn
Zolol [24]

Writing life on my fantasy planet

8 0
3 years ago
Other questions:
  • An air conditioner using refrigerant R-134a as the working fluid and operating on the ideal vapor-compression refrigeration cycl
    12·1 answer
  • Compute the estimated actual endurance limit for SAE 4130 WQT 1300 steel bar with a rectangular cross section of 20.0 mm by 60 m
    11·1 answer
  • Required information NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part
    9·1 answer
  • Who is the best musician in Nigeria<br>​
    11·2 answers
  • When should u check ur review mirror
    5·1 answer
  • The application of technology results in human-made things called
    9·1 answer
  • Create an array of 10 size and assign 10 random numbers. Now find the sum of the array using for and while loop.
    6·1 answer
  • Which of the following is true regarding screw gauges and shank?
    5·1 answer
  • All these are returnless fuel systems EXCEPT ?
    8·1 answer
  • Engineering problems and it solutions it machine design​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!