1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nitella [24]
2 years ago
12

A 75 ohm coaxial transmission line has a length of 2.0 cm and is terminated with a load impedance of 37.5 + j75 Ohm. If the diel

ectric constant of the line is 2.56 and the frequency is 3.0 GHz, find the input impedance to the line, the reflection coefficient at the load, the reflection coefficient at the input, and the SWR on the line.
Engineering
1 answer:
Hatshy [7]2 years ago
8 0

Answer:

The load reflection coefficient, \Gamma =0.62\angle 82.875^{\circ} \Omega

Reflection coefficient at input,  \Gamma = 0.62\angle - 147.518^{\circ} \Omega

SWR = 4.26

Given:

Characteristic impedance of the co-axial cable, Z_{c} = 75 \Omega

Length of the cable, L = 2.0 cm = 0.02 m

Z_{Load} = 37.5 + j75 \Omega

Dielectric constant, K = 2.56

frequency, f = 3.0 GHz = 3.0 \times 10^{9} Hz

Explanation:

In order to calculate the reflection coefficient at load, we first calculate these:

The line input impedance Z_{i} is given by:

Z_{i} = Z_{c}\frac{Z_{Load} + jZ_{c} tan(\beta L)}{Z_{c} + jZ_{Load} tan (\beat L)}                     (1)

Now, we calculate the value of \beta:

\beta = \frac{2\pi}{\lambda'} = \farc{2\pi f\sqrt{K}}{c}

(since, \lambda' = \farc{c}{f\sqrt{K}})

\beta = \farc{2\pi f\sqrt{2.56}}{3\times 10^{8}} = 100.53

Now, Substituting the value in eqn (1):

Z_{i} = 75\frac{37.5 + j75 + j75 tan(100.53\times 0.02)}{75 + j(37.5 + j75) tan ( 100.53\times 0.02)} = 18.99 - j20.55 \Omega = 27.98\angle - 47.257^{\circ} \Omega    

Now, the load reflection coefficient is given by:

\Gamma = \frac{Z_{Load} - Z_{c}}{Z_{c} + Z_{Load}}}

Thus

\Gamma = \frac{37.5 + j75 - 75}{75 + 37.5 + j75}} = 0.077 + j0.615 = 0.62\angle 82.875^{\circ} \Omega

Similarly,

Reflection coefficient at input:

\Gamma' = \frac{Z_{i} - Z_{c}}{Z_{c} + Z_{i}}}

\Gamma' = \frac{18.99 - j20.55 - 75}{75 + 18.99 - j20.55}} = - 0.523 - j0.334 = 0.62\angle - 147.518^{\circ} \Omega

Now, the SWR is given by:

SWR, Standing Wave Ratio = \frac{1 +|\Gamma|}{1 - |\Gamma|}

SWR = \frac{1 +|0.62|}{1 - |0.62|} = 4.26

You might be interested in
The hot and cold inlet temperatures to a concentric tube heat exchanger are Th,i = 200°C, Tc,i = 100°C, respectively. The outlet
alexgriva [62]

Answer:Counter,

0.799,

1.921

Explanation:

Given data

T_{h_i}=200^{\circ}C

T_{h_o}=120^{\circ}C

T_{c_i}=100^{\circ}C

T_{c_o}=125^{\circ}C

Since outlet temperature of cold liquid is greater than hot fluid outlet temperature therefore it is counter flow heat exchanger

Equating Heat exchange

m_hc_{ph}\left [ T_{h_i}-T_{h_o}\right ]=m_cc_{pc}\left [ T_{c_o}-T_{c_i}\right ]

\frac{m_hc_{ph}}{m_cc_{pc}}=\frac{125-100}{200-120}=\frac{25}{80}=C\left ( capacity rate ratio\right )

we can see that heat capacity of hot fluid is minimum

Also from energy balance

Q=UA\Delta T_m=\left ( mc_p\right )_{h}\left ( T_{h_i}-T_{h_o}\right )

NTU=\frac{UA}{\left ( mc_p\right )_{h}}=\frac{\left ( T_{h_i}-T_{h_o}\right )}{T_m}

T_m=\frac{\left ( 200-125\right )-\left ( 120-100\right )}{\ln \frac{75}{20}}

T_m=41.63^{\circ}C

NTU=1.921

And\ effectiveness \epsilon =\frac{1-exp\left ( -NTU\left ( 1-c\right )\right )}{1-c\left ( -NTU\left ( 1-c\right )\right )}

\epsilon =\frac{1-exp\left ( -1.921\left ( 1-0.3125\right )\right )}{1-0.3125exp\left ( -1.921\left ( 1-0.3125\right )\right )}

\epsilon =\frac{1-exp\left ( -1.32068\right )}{1-0.3125exp\left ( -1.32068\right )}

\epsilon =\frac{1-0.2669}{1-0.0834}

\epsilon =0.799

5 0
3 years ago
What line separates two lanes traveling in the same direction
soldier1979 [14.2K]

Answer:

White lane lines separate lanes of traffic moving in the same direction. (UK)

5 0
2 years ago
Read 2 more answers
State three active materials of a lead acid cell​
igomit [66]

Answer:

lead dioxide,sulfate and lead acid

6 0
3 years ago
Read 2 more answers
Consider the following list. list = {24, 20, 10, 75, 70, 18, 60, 35} Suppose that list is sorted using the insertion sort algori
Greeley [361]

Answer:

Option B

10,20,24,75,70,18,60,35

Explanation:

The first, second and third iteration of the loop will be as follows

insertion sort iteration 1: 20,24,10,75,70,18,60,35

insertion sort iteration 2:10,20,24,75,70,18,60,35

insertion sort iteration 3: 10,20,24,75,70,18,60,35

8 0
3 years ago
If a weld is laying into a joint with a concave weld contour with undercutting issues, what might be the cause?
Katarina [22]

Answer:bbbb

Explanation:

4 0
2 years ago
Other questions:
  • Compare automation and autonomous
    12·1 answer
  • Air enters the compressor of an ideal cold air-standard Brayton cycle at 100 kPa, 300 K, with a mass flow rate of 6 kg/s. The co
    11·1 answer
  • A large plate is fabricated from a steel alloy that has a plane strain fracture toughness of 55 MPa √m (50 ksi √in.). If, during
    5·1 answer
  • Six forces act on a beam that forms part of a building's
    15·1 answer
  • why HF (hydrogen fluoride) has higher boiling temperature than HCl (hydrogen chloride), even thought HF has lower molecular weig
    8·1 answer
  • A satellite would have a mass of 270 kg on the surface of Mars. Determine the weight of the satellite in pounds if it is in orbi
    12·1 answer
  • What is the purpose of a hot water heater?​
    8·1 answer
  • Trapezoidal screw press project
    6·1 answer
  • Resistance depends on which three properties of a wire?
    15·1 answer
  • A gas metal arc welder is also known as a _____ welder.<br> A) TIGB) GTAWC) GMAWD) Resistance spot
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!