1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gavmur [86]
3 years ago
10

Please help me with this. Picture

Engineering
1 answer:
Tamiku [17]3 years ago
7 0

Answer:

in so confused

Explanation:

??

You might be interested in
A 0.25in diameter steel rod BC is securely attached between two identical 1in diameter copper rods (AB and CD). Find the torque
Helen [10]

Answer:

Tmax= 46.0 lb-in

Explanation:

Given:

- The diameter of the steel rod BC d1 = 0.25 in

- The diameter of the copper rod AB and CD d2 = 1 in

- Allowable shear stress of steel τ_s = 15ksi

- Allowable shear stress of copper τ_c = 12ksi

Find:

Find the torque T_max

Solution:

- The relation of allowable shear stress is given by:

                             τ = 16*T / pi*d^3

                             T = τ*pi*d^3 / 16

- Design Torque T for Copper rod:

                             T_c = τ_c*pi*d_c^3 / 16

                             T_c = 12*1000*pi*1^3 / 16

                             T_c = 2356.2 lb.in

- Design Torque T for Steel rod:

                             T_s = τ_s*pi*d_s^3 / 16

                             T_s = 15*1000*pi*0.25^3 / 16

                             T_s = 46.02 lb.in

- The design torque must conform to the allowable shear stress for both copper and steel. The maximum allowable would be:

                             T = min ( 2356.2 , 46.02 )

                             T = 46.02 lb-in

6 0
3 years ago
Answer the following either true (T) or false (F) (5 pts)
likoan [24]

Answer:

1. True

2. True

3. False

Explanation:

The office location is where the soil layer is not uniform. The thickness of the soil varies which could lead to doors being jammed. The engineer needs to estimate the differential in clay soil.

The inclined surface can hold less weight than a vertical surface. The capacity to hold the weight is due to the gravitational force which is exerted to the load.

6 0
3 years ago
You are evaluating the lifetime of a turbine blade. The blade is 4 cm long and there is a gap of 0.16 cm between the tip of the
Tcecarenko [31]

Answer:

Explanation:

Given conditions

1)The stress on the blade is 100 MPa

2)The yield strength of the blade is 175 MPa

3)The Young’s modulus for the blade is 50 GPa

4)The strain contributed by the primary creep regime (not including the initial elastic strain) was 0.25 % or 0.0025 strain, and this strain was realized in the first 4 hours.

5)The temperature of the blade is 800°C.

6)The formula for the creep rate in the steady-state regime is dε /dt = 1 x 10-5 σ4 exp (-2 eV/kT)

where: dε /dt is in cm/cm-hr σ is in MPa T is in Kelvink = 8.62 x 10-5 eV/K

Young Modulus, E = Stress, \sigma /Strain, ∈

initial Strain, \epsilon_i = \frac{\sigma}{E}

\epsilon_i = \frac{100\times 10^{6} Pa}{50\times 10^{9} Pa}

\epsilon_i = 0.002

creep rate in the steady state

\frac{\delta \epsilon}{\delta t} = (1 \times {10}^{-5})\sigma^4 exp^(\frac{-2eV}{kT} )

\frac{\epsilon_{initial} - \epsilon _{primary}}{t_{initial}-t_{final}} = 1 \times 10^{-5}(100)^{4}exp(\frac{-2eV}{8.62\times10^{-5}(\frac{eV}{K} )(800+273)K} )

but Tinitial = 0

\epsilon_{initial} - \epsilon _{primary}} = 0.002 - 0.003 = -0.001

\frac{-0.001}{-t_{final}} = 1 \times 10^{-5}(100)^{4}\times 10^{(\frac{-2eV}{8.62\times10^{-5}(\frac{eV}{K} )1073K} )}

solving the above equation,

we get

Tfinal = 2459.82 hr

3 0
3 years ago
0/5 pts
Brilliant_brown [7]

Explanation:

150 divide by 150 and that how you do the is you what to divide together 15/ 150 you welcome have a good day is you need something else

4 0
3 years ago
Someone claims that in fully developed turbulent flow in a tube, the shear stress is a maximum at the tube surface. Is this clai
Alika [10]

Answer:

Yes this claim is correct.

Explanation:

The shear stress at any point is proportional to the velocity gradient at any that point. Since the fluid that is in contact with the pipe wall shall have zero velocity due to no flow boundary condition and if we move small distance away from the wall the velocity will have a non zero value thus a maximum gradient will exist at the surface of the pipe hence correspondingly the shear stresses will also be maximum.

5 0
3 years ago
Other questions:
  • What is an Algorithm? *
    5·1 answer
  • Write down one metal or alloy that is best suited for each of the following applications:
    8·1 answer
  • What is the maximum thermal efficiency possible for a power cycle operating between 600P'c and 110°C? a). 47% b). 56% c). 63% d)
    15·1 answer
  • Select the right answer<br>​
    8·1 answer
  • In a diesel engine, the fuel is ignited by (a) spark (c) heat resulting from compressing air that is supplied for combustion (d)
    14·1 answer
  • Two piezometers have been placed along the direction of flow in a confined aquifer that is 30.0 m thick. The piezometers are 280
    6·1 answer
  • Which section of business plan should be the bulk of the plan
    7·1 answer
  • Define Viscosity. What are the main differences between viscous and inviscid flows?
    10·1 answer
  • Who invented engineering first?​
    12·1 answer
  • Which of the following is a Dashboard Scoreboard for alignment of the business where information is constantly flowing through t
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!