Answer:
y =
x + 2
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
Calculate m using the slope formula
m = 
with (x₁, y₁ ) = (0, 2) and (x₂, y₂ ) = (4, 5) ← 2 points on the line
m =
= 
The line crosses the y- axis at (0, 2 ) ⇒ c = 2
y =
x + 2 ← equation of line
Answer:\
3 inches does not even equal a whole yard it equals 0.08 of a yard
The trapezoidal approximation will be the average of the left- and right-endpoint approximations.
Let's consider a simple example of estimating the value of a general definite integral,

Split up the interval
![[a,b]](https://tex.z-dn.net/?f=%5Ba%2Cb%5D)
into

equal subintervals,
![[x_0,x_1]\cup[x_1,x_2]\cup\cdots\cup[x_{n-2},x_{n-1}]\cup[x_{n-1},x_n]](https://tex.z-dn.net/?f=%5Bx_0%2Cx_1%5D%5Ccup%5Bx_1%2Cx_2%5D%5Ccup%5Ccdots%5Ccup%5Bx_%7Bn-2%7D%2Cx_%7Bn-1%7D%5D%5Ccup%5Bx_%7Bn-1%7D%2Cx_n%5D)
where

and

. Each subinterval has measure (width)

.
Now denote the left- and right-endpoint approximations by

and

, respectively. The left-endpoint approximation consists of rectangles whose heights are determined by the left-endpoints of each subinterval. These are

. Meanwhile, the right-endpoint approximation involves rectangles with heights determined by the right endpoints,

.
So, you have


Now let

denote the trapezoidal approximation. The area of each trapezoidal subdivision is given by the product of each subinterval's width and the average of the heights given by the endpoints of each subinterval. That is,

Factoring out

and regrouping the terms, you have

which is equivalent to

and is the average of

and

.
So the trapezoidal approximation for your problem should be
Answer:
Option (b) is correct.
The expression is equivalent, but the term is not completely factored.
Step-by-step explanation:
Given : a student factors to
We have to choose the correct statement about from the given options.
Given is factored to
Consider
Using algebraic identity,
comparing and b = 4, we have,
Thus, the factorization is equivalent but we can simplify it further also, as
Using algebraic identity,
Thus,
Can be written as
Thus, the expression is equivalent, but the term is not completely factored.
Option (b) is correct.
S I can
which linear equation due u want?