Momentum = (mass) x (speed)
Change in momentum = (force) x (time)
The initial momentum is (mass) x (speed) = 2500x 25 = 62,500 kg-m/s.
Since you want to <u>stop</u> the vehicle, that number is also the required <em>change</em>
in momentum ... you want the vehicle to wind up with zero momentum.
62,500 = (force) x (time) = 20 x force
Divide each side by 20 :
force = 62,500 / 20 = <em>3,125 newtons </em>
It is very difficult for an atom to accept a proton. It can only be done under very special circumstances. So A and C are both incorrect. I don't see how D is possible. The atom does lose 1 electron, but how it gets 21 is think air.
The answer is B which is exactly what happens.
Answer:
f = 130 Khz
Explanation:
In a circuit driven by a sinusoidal voltage source, there exists a fixed relationship between the amplitudes of the current and the voltage through any circuit element, at any time.
For an inductor, this relationship can be expressed as follows:
VL = IL * XL (1) , which is a generalized form of Ohm's Law.
XL is called the inductive reactance, and is defined as follows:
XL = ω*L = 2*π*f*L, where f is the frequency of the sinusoidal source (in Hz) and L is the value of the inductance, in H.
Replacing in (1), by the values given of VL, IL, and L, we can solve for f, as follows:
f = VL / 2*π*IL*L = 12 V / 2*π*(3.00*10⁻³) A* (4.9*10⁻³) H = 130 Khz
Answer:
a) 
b) 
c) 
d) 
Explanation:
a) The initial vertical velocity is given by:

Where:
θ: 25°
v: is the magnitude of the speed = 23 m/s

b) The initial horizontal velocity can be calculated as follows:

c) The flight time can be calculated using the following equation:

Where:
x: is the total distance = 42 m

d) The maximum height is given by:
Where:
: is the final vertical velocity =0 (at the maximum heigth)
g: is the gravity = 9.81 m/s²
I hope it helps you!
KE = 0.5mV^2 = 0.5 * 0.0025 * (20)^2 =
<span>0.5 Joules.</span>