Answer:In the case of two proton beams the protons repel one another because they have the same sign of electrical charge. There is also an attractive magnetic force between the protons, but in the proton frame of reference this force must be zero! Clearly then the attractive magnetic force that reduces the net force between protons in the two beams as seen in our frame of reference is relativistic. In particular the apparent magnetic forces or fields are relativistic modifications of the electrical forces or fields. As such modifications, they cannot be stronger than the electrical forces and fields that produce them. This follows from the fact that switching frames of reference can reduce forces, but it can’t turn what is attractive in one frame into a repulsive force in another frame.
In the case of wires the net charges in two wires are zero everywhere along the wires. That makes the net electrical forces between the wires very nearly zero. Yet the relativistic magnetic forces and fields will be of the same sort as in the case of two beams of charges of a single sign. This is true even in the frame of reference of what we think as the moving charges, that is, the electrons. In the frame of reference moving at the drift velocity of these current-carrying electrons, it is the protons or positively charged ions that are moving in the other direction. Consequently in any frame of reference for current-carrying wires in parallel, the net electrical force will be essentially zero, and there will be a net attractive magnetic force
Explanation:
Answer:
Approximate height of the building is 23213 meters.
Explanation:
Let the height of the building be represented by h.
0.02 radians = 0.02 × 
= 0.02 x (180/
)
0.02 radians = 1.146°
10.5 km = 10500 m
Applying the trigonometric function, we have;
Tan θ = 
So that,
Tan 1.146° = 
⇒ h = Tan 1.146° x 10500
= 2.21074 x 10500
= 23212.77
h = 23213 m
The approximate height of the building is 23213 m.
A longitudinal wave transports energy through the medium without permanently transporting matter.
Hope this helps :D
To solve this problem it is necessary to apply the concepts related to uniaxial deflection for which the training variable is applied, determined as

Where,
P = Tensile Force
L= Length
A = Cross sectional Area
E = Young's modulus
PART A) The elongation of the bar in a length of 200 mm caliber, could be determined through the previous equation, then



Therefore the elongaton of the rod in a 200mm gage length is 
PART B) To know the change in the diameter, we apply the similar ratio of the change in length for which,

Where,
Poission's ratio
= Lateral strain
= Linear strain




Therefore the change in diameter of the rod is 
Hello!
Static electricity occurs due to an imbalance in positively and negatively charged atoms. An example of this is when you take your clothes out of the dryer, and feel a slight sting when touching them. Another example of static electricity is lightning.
Current electricity occurs when there is a constant flow of electrons, such as in plug-operated machinery or anything operated using a battery. :)