The value of the missing probability is:
P(A) = 1/5
So the correct option is D.
<h3>How to find the missing probability?</h3>
First, we know that:
P(A∩B) = probability that events A and B are true = 3/100
And we also know that:
P(B|A) = probability that event B is true given that event A is true = 3/20
Here we have the rule:
P(A∩B) = P(B|A)*P(A)
Replacing the first two:
3/100 = (3/20)*P(A)
Solving for P(A), we get:
(3/100)*(20/3) = 1/5 = P(A).
So we conclude that the correct option for the missing probability is the one in option D.
If you want to learn more about probability:
brainly.com/question/25870256
#SPJ1
Answer:
$687.42
Step-by-step explanation:
The total with tax is ...
(price) + (tax rate)×(price)
= price(1 +tax rate)
= $643.95×1.0675 ≈ $687.42 . . . price with tax
t + 23 > 1 subtract 23 from both sides
t + 23 - 23 > 1 - 23
t > -22
4 (needs to be twenty characters)
Answer:
See Explanation
Step-by-step explanation:
![log(x + y) = log3 + \frac{1}{2} logx+ \frac{1}{2} logy \\ \\ log(x + y) = log3 + logx ^{\frac{1}{2}} + logy ^{\frac{1}{2}}\\ \\ log(x + y) = log3 + log(xy) ^{\frac{1}{2}} \\ \\ log(x + y) = log[3(xy) ^{\frac{1}{2}}] \\ \\ x + y = 3(xy) ^{\frac{1}{2}} \\ \\ squaring \: both \: sides \\ {(x + y)}^{2} = \bigg(3(xy) ^{\frac{1}{2}} \bigg)^{2} \\ \\ {x}^{2} + {y}^{2} + 2xy = 9xy \\ \\ {x}^{2} + {y}^{2} = 9xy - 2xy \\ \\ \purple{ \bold{{x}^{2} + {y}^{2} = 7xy}} \\ thus \: proved](https://tex.z-dn.net/?f=log%28x%20%2B%20y%29%20%3D%20log3%20%2B%20%20%5Cfrac%7B1%7D%7B2%7D%20logx%2B%20%20%5Cfrac%7B1%7D%7B2%7D%20logy%20%5C%5C%20%20%5C%5C%20log%28x%20%2B%20y%29%20%3D%20log3%20%2B%20%20%20%20logx%20%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%2B%20%20%20logy%20%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5C%5C%20%20%5C%5C%20%20log%28x%20%2B%20y%29%20%3D%20log3%20%2B%20%20%20%20log%28xy%29%20%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%5C%5C%20%20%5C%5C%20log%28x%20%2B%20y%29%20%3D%20%20log%5B3%28xy%29%20%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5D%20%5C%5C%20%20%5C%5C%20x%20%2B%20y%20%3D%203%28xy%29%20%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%5C%5C%20%20%5C%5C%20squaring%20%5C%3A%20both%20%5C%3A%20sides%20%5C%5C%20%20%7B%28x%20%2B%20y%29%7D%5E%7B2%7D%20%20%3D%20%20%5Cbigg%283%28xy%29%20%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%5Cbigg%29%5E%7B2%7D%20%20%5C%5C%20%20%5C%5C%20%20%7Bx%7D%5E%7B2%7D%20%20%2B%20%20%7By%7D%5E%7B2%7D%20%20%2B%202xy%20%3D%209xy%20%5C%5C%20%20%5C%5C%20%20%7Bx%7D%5E%7B2%7D%20%20%2B%20%20%7By%7D%5E%7B2%7D%20%20%3D%209xy%20-%202xy%20%5C%5C%20%20%5C%5C%20%20%20%5Cpurple%7B%20%5Cbold%7B%7Bx%7D%5E%7B2%7D%20%20%2B%20%20%7By%7D%5E%7B2%7D%20%20%3D%207xy%7D%7D%20%5C%5C%20thus%20%5C%3A%20proved)