Answer:
130
Step-by-step explanation:
13 goes into 16 how many times - 1
subtract- you get 390
13 goes into 390 how many times?- 30
Your answer - 130
ok hi im here to help not rlly just want my points up your useless
Step-by-step explanation:
Firstly, notice that this shape is composed of ³/₄ of a circle and ¹/₂ of a square;
The lower left part is the ¹/₂ square, with only 2 sides (a left and lower side) of length 3 units;
The perimeter of this part of the shape is simply the sum of the two sides:
3 + 3 = 6
The remaining part is the ³/₄ circle, which has a radius of 3 units;
The circumference of a circle is found by the formula:
πd
d = diameter = 2 × radius
We only have ³/₄ of the circle, however, so we only have ³/₄ the circumference:
³/₄ × π(2(3)) = ³/₄ × 6π
= ⁹/₂π (or, equally, 4.5π)
So the total perimeter is the sum of the perimeter of the ¹/₂ square and the ³/₄ circle:
4.5π + 6
Answer:
98
Step-by-step explanation:
PEMDAS: Parenthesis, Exponents, Multiply, Divide, Add, Subtract, if tied, go left to right.
Elementary Algebra rhyme you should consider a requirement to remember because it's the base of a vast majority of problem's you'll encounter.
10+4(2+20)
10+4(22). . .distribute the 4 into the parenthesis aka multiply 22*4
10+88 = 98
Answer:

Step-by-step explanation:
![\cos(2x) = \cos^2 x-\sin^2 x = 1-2\sin^2 x \\ \\ \cos(x) = 1-2\sin^2 (\frac{x}{2}) \\ \\ \Rightarrow \sin^2 (\frac{x}{2}) = \dfrac{1-\cos(x)}{2}\\ \\ \sin(\frac{x}{2}) = \pm \sqrt{\dfrac{1-\cos(x)}{2}},\quad x\in [\frac{3\pi }{2},\pi] \Rightarrow \frac{x}{2}\in [\frac{3\pi}{4},\frac{\pi}{2}]\\ \\ \Rightarrow \sin(\frac{x}{2}) > 0 \Rightarrow \sin(\frac{x}{2}) = \sqrt{\dfrac{1-(-\frac{3}{5})}{2}} \Rightarrow \sin(\frac{x}{2}) = \sqrt{\dfrac{8}{10}}=\dfrac{2\sqrt 2}{\sqrt{10}} = \\ \\ =\dfrac{2\sqrt 5}{5}](https://tex.z-dn.net/?f=%5Ccos%282x%29%20%3D%20%5Ccos%5E2%20x-%5Csin%5E2%20x%20%3D%201-2%5Csin%5E2%20x%20%5C%5C%20%5C%5C%20%5Ccos%28x%29%20%3D%201-2%5Csin%5E2%20%28%5Cfrac%7Bx%7D%7B2%7D%29%20%5C%5C%20%5C%5C%20%5CRightarrow%20%5Csin%5E2%20%28%5Cfrac%7Bx%7D%7B2%7D%29%20%3D%20%5Cdfrac%7B1-%5Ccos%28x%29%7D%7B2%7D%5C%5C%20%5C%5C%20%5Csin%28%5Cfrac%7Bx%7D%7B2%7D%29%20%3D%20%5Cpm%20%5Csqrt%7B%5Cdfrac%7B1-%5Ccos%28x%29%7D%7B2%7D%7D%2C%5Cquad%20x%5Cin%20%5B%5Cfrac%7B3%5Cpi%20%7D%7B2%7D%2C%5Cpi%5D%20%5CRightarrow%20%5Cfrac%7Bx%7D%7B2%7D%5Cin%20%5B%5Cfrac%7B3%5Cpi%7D%7B4%7D%2C%5Cfrac%7B%5Cpi%7D%7B2%7D%5D%5C%5C%20%5C%5C%20%5CRightarrow%20%5Csin%28%5Cfrac%7Bx%7D%7B2%7D%29%20%3E%200%20%5CRightarrow%20%5Csin%28%5Cfrac%7Bx%7D%7B2%7D%29%20%3D%20%5Csqrt%7B%5Cdfrac%7B1-%28-%5Cfrac%7B3%7D%7B5%7D%29%7D%7B2%7D%7D%20%5CRightarrow%20%5Csin%28%5Cfrac%7Bx%7D%7B2%7D%29%20%3D%20%5Csqrt%7B%5Cdfrac%7B8%7D%7B10%7D%7D%3D%5Cdfrac%7B2%5Csqrt%202%7D%7B%5Csqrt%7B10%7D%7D%20%3D%20%5C%5C%20%5C%5C%20%3D%5Cdfrac%7B2%5Csqrt%205%7D%7B5%7D)